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Energy-saving has become one of the basic strategies for developing countries like Turkey that need energy
imports. One of these strategies is energy-efficient building designs. The energy-efficient building envelope, which
is one of the most important components of energy-efficient building designs, is of great importance in terms of
insulation, indoor comfort, and environmental effects. In addition, the climatic and seismic characteristics of the
regions where the buildings will be built are a matter of curiosity for building designers. It is an important problem
to determine the effect of climate and earthquake zones on the building envelope. In this study, the effects of
climate and earthquake zones on the costs of the building life cycle, together with the building envelope properties,
are investigated. Life-cycle cost assessment (LCA) analysis is applied by considering the parameters of building
envelope material cost, heating energy consumption cost, cooling energy consumption cost, CO2 emission cost,
embodied carbon cost, and earthquake-based repair cost. A total of fourteen different decision variables are taken
into account, including exterior plaster, wall, and roof insulation material, wall, interior plaster, the thickness of
these materials, window type, and window/wall ratio. Significance levels of decision variables for heating energy
consumption, cooling energy consumption, and CO2 emission are calculated. It is determined that five decision
variables for heating energy consumption, four for cooling energy consumption, and seven for CO2 emission are
more important. It is an interesting pattern that earthquake zones have 28, 46, and 13% importance for heating
energy consumption, cooling energy consumption, and CO2 emission. It has been observed that the EnergyPlus
based ANN approach proposed for LCA analysis provides over 95% accuracy on the sample data set.
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Introduction

An energy-efficient building is called a structure that provides
minimum carbon emission by using energy effectively
consumed for heating, cooling, air conditioning, and
lighting. The most important stage in the construction
processes of energy-efficient buildings is the design step. The
building needs less energy through the measures taken and
the decisions made during the design phase.

The most basic strategy for less energy consumption and
carbon emissions is to design an energy-efficient building

envelope. The energy-efficient building envelope consists
of components that provide thermal insulation and indoor
comfort. However, thermal insulation systems are not
preferred in developing countries such as Turkey because of
the higher cost of purchase and installation of insulation (1).
Therefore, the building (residential/commercial) sectors in
Turkey need to spend a lot of money on heat suppression
every year (2). In addition, the most basic factor affecting
the choice of materials and equipment in energy-efficient
buildings is the location of the building. Since it is not
appropriate to use the same building envelope designs in
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different climatic zones, climatic characteristics also have an
impact on the heating and cooling energy consumption and
carbon emissions of buildings. In addition to the climatic
characteristics, the earthquake characteristics of the regions
where the buildings will be constructed should also be
taken into account in the thermal energy consumption.
Since, depending on the specific geographical region where
it is situated, a building can potentially be attacked by
being exposed to natural hazards such as earthquakes, it
may suffer from different levels of structural deformation
(3). This situation may cause the thermal balance of the
indoor environment to be lost due to deterioration in the
building envelope. Naturally, more energy consumption
and more carbon emissions will be required in order to
restore the thermal balance. In order to prevent more energy
consumption, possible repair costs of the building envelope
should also be considered, taking into account the possibility
of an earthquake.

Countries that are developing and in need of energy
imports, such as Turkey, must make different laws and
regulations to reduce their energy consumption. Moreover,
in a country with different climate and earthquake zones such
as Turkey again, heating and cooling energy consumption
cannot be the same in every zone. Therefore, in recent
years, energy-efficient building designs have become one of
the most important strategic activities of governments that
need energy import.

Once the studies in the literature are reviewed, the
lifecycle cost assessment (LCA) is generally used for
energy efficient building designs. The cost parameters that
occur during the economic life of the buildings are taken
into account through the LCA approach. Accordingly,
different parameters including energy consumption,
material cost, and environmental impacts are included
in LCA. In addition, numerical calculations, simulation
programs, or artificial intelligence approaches are preferred
to obtain LCA parameters.

Caglayan et al. (4) analyzed the heating energy
consumption and material costs for four different climate
zones in Turkey, taking into account the window type, wall
insulation, ceiling insulation, and basement floor insulation
material thicknesses. They developed an optimization
tool by using numerical calculation formulas in a genetic
algorithm (GA). In addition, they performed a sensitivity
analysis for window, wall, ceiling, and basement insulation
materials. Himmetoglu et al. (5) applied attribute reduction
to obtain the climate characteristics affecting the heating
and cooling energy consumption of a public building for
two different climate zones in Turkey. They also proposed
a structure called PSACONN mining to determine the
most suitable building envelopes that give the minimum
heating and cooling energy consumption. Acar et al. (6)
took into account the orientation, wall insulation material,
roof insulation material, glazing type, and window thickness
for the residential buildings in Turkey. They used the

EnergyPlus simulation program and non-dominated sorting
genetic algorithm-II (NSGA-II) together to analyze building
envelope alternatives that minimize the total thermal energy
demand and investment cost. Delgarm et al. (7) analyzed
envelope alternatives that minimize heating, cooling, and
lighting energy consumption for four different climate zones,
by considering shading specifications, window size, glazing,
and wall material. They aimed to scan the entire solution
space in a shorter time by developing an EnergyPlus-based
particle swarm optimization (PSO) algorithm. Chantrelle
et al. (7) considered exterior wall type, roof type, ground
floor type, intermediate floor type, partition wall type,
and window type as decision variables. They analyzed
energy consumption, thermal comfort, investment costs,
and environmental impacts using the TRNSYS simulation
program and the NSGA-II approach together. Karmellos
et al. (8) aimed to determine the most suitable building
envelope combination that minimizes annual energy
consumption and investment costs for two different
climate zones. They have developed a MATLAB-based
tool for decision-makers, taking into account door type,
window type, wall type, energy systems, lighting systems,
and electrical appliances. Echenagucia et al. (9) aimed to
minimize the heating, cooling, and lighting energy demands
for different climatic regions by considering the number
of windows, window position, window shape, window
type, wall thickness, and glazing. They used EnergyPlus
and NSGA-II together. Gossard et al. (10) analyzed the
annual energy consumption and comfort levels for two
different climate zones, taking into account the thermo
physical properties of the external wall. They proposed an
approach including TRNSYS and NSGA-II approaches,
taking into account thermal conductivity and volumetric
specific heat for the wall and the roof as decision variables.
Ascione et al. (11) proposed an approach that minimizes the
percentage of heating/cooling energy demand and thermal
discomfort hours for two cities with the same climate
features. They considered window type, insulation thickness,
wall density, solar absorptance, and thermal emissivity
by using the EnergyPlus simulation program integrated
into the NSGA-II approach. Wang and Wei (12) analyzed
building envelope designs that minimize building energy
loads and construction costs for tropical and subtropical
climate zones. By integrating numerical calculations into
quantum GA, they used the wall material, roof material,
window sizes, glazing, window shading, orientation, and the
number of windows as decision variables. Albatayneh (13)
aimed to minimize heating and cooling loads to provide
thermal comfort by using EnergyPlus and GA together
for a climate zone. A sensitivity analysis was performed
by using regression analysis for the decision variables
of orientation, wall insulation thickness, roof insulation
material, partition construction, window/wall ratio, window
type, window shading, glazing type, infiltration rate, and
natural ventilation rate. Chegari et al. (14) aimed to minimize
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heating and cooling energy consumption by using TRNSYS,
NSGA-II, and ANN approaches together. They considered
exterior wall materials, roof materials, window materials,
glazing, shading, and air changing as the decision variables.
Bre et al. (15) analyzed heating and cooling performances
for decision variables of roof type, exterior wall type, interior
wall type, solar orientation, solar absorptance, window size,
window type, window shading, and infiltration rate by using
EnergyPlus, the artificial neural network (ANN), and NSGA-
II together. Huang et al. (16) analyzed the heating energy
consumption by proposing a mathematical model using
numerical formulations. Insulation thicknesses, orientation,
window/wall ratio, and window type were taken into account
as decision variables. Lu et al. (17) applied LCA through
EnergyPlus by considering heating energy consumption,
cooling energy consumption, CO2 emission, material cost,
and heat transfer coefficient. Window type, wall insulation
type, roof insulation type, and insulation thickness were
used as decision variables. Yuan et al. (18) proposed an
LCA approach to minimize material cost, heating energy
consumption, and cooling energy consumption using
numerical calculations. They considered doors, windows,
exterior walls, partition walls, and roof materials as decision
variables. Lin et al. (19) used the NSGA-II approach to
minimize the building envelope costs and CO2 emissions.
They considered wall material, roof material, glass curtain
material, window size, number of windows, number of
glasses, window sunshade shape, window sunshade type,
and six different air conditioning parameters as the decision
variables. Kim et al. (20) applied feature subset selection
with the C4.5 decision tree method, taking into account
parameters such as material type, insulation thickness, and
air gap for walls and roofs. For more detailed literature on
envelope design and material analysis in energy-efficient
buildings, the review paper published by Kheiri (21) may
be reviewed. To the best of our knowledge, there is only
one study evaluating the effects of earthquakes on energy-
efficient building envelope materials. In the study presented
by Liu and Mi (22), damages that occur only on the windows
due to earthquakes (drift rate) are taken into account along
with the thermal energy consumption of the building, CO2
emission, and material cost.

This study has a wider perspective than the above studies
in terms of its scope. The most important contribution
of this study is to consider the effects of climate and
earthquake zones in energy-efficient building designs, as well
as the importance levels of the window, exterior plaster,
insulation (wall and roof), wall, and interior plaster materials
used in the building envelope. The second important
contribution is to take into account the heating energy
consumption, cooling energy consumption, building carbon
emissions, embodied carbon, material costs, and repair
costs caused by the earthquake effect. Accordingly, in the
first step of the study, the parameters that most affect
heating, cooling, and CO2 emissions from the climate

and earthquake zone parameters along with the building
envelope attributes are determined. In the second step
of the study, an LCA analysis including heating energy
consumption, cooling energy consumption, CO2 emission,
embodied carbon, material cost, and earthquake repair cost is
proposed. ANN models based on the EnergyPlus simulation
program are developed to predict heating, cooling, and CO2
emissions. The proposed approach was performed in a small-
sized case study.

This study is organized as follows. In Section “Research
Elaborations,” the approaches used for the proposed
methodology are presented. In Section “Results and findings
for a case study,” a case study is presented. Conclusion are
given in section “Conclusion.”

Research elaborations

The proposed methodology consists of three main steps.
In the first step, the feature subset selection is performed
in order to analyze the features affecting the heating
energy consumption, cooling energy consumption, and
CO2 emission. In the second step, the predictive models
are developed in order to separately forecast heating
energy consumption, cooling energy consumption, and CO2
emission according to the features obtained in Step 1. In
the last step, an LCA analysis including the material cost,
embodied carbon, and seismic repair cost along with the
parameter values estimated in Step 2 is performed.

Feature subset selection

The proposed approach analyzes the effects of building
envelope material features and regional characteristics on
heating energy consumption, cooling energy consumption,
and CO2 emission. The importance and effect of regional
characteristics and material characteristics may not be
the same for the mentioned parameters. Therefore, the
decision variables affecting each parameter should be
evaluated separately.

In this step, “the correlation-based feature subset selection
algorithm for machine learning” (CfsSubsetEval) approach
proposed by Hall (23) was preferred for the feature selection
process. The CfsSubsetEval is an approach that evaluates
the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the
degree of redundancy between them (23). The random forest
algorithm presented by Breiman (24) was used to analyze the
accuracy of the CfsSubsetEval approach. Random forests are
a combination of tree predictors such that each tree depends
on the values of a random vector sampled independently and
with the same distribution for all trees in the forest (24).

In the proposed approach, applying the feature subset
selection to the decision variables for heating energy
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consumption, cooling energy consumption, and CO2
emission parameters aims to make the estimation structure
work better. In addition, it will enable the discovery of
hidden patterns between the mentioned parameters and
decision variables.

The predictive modeling

Energy simulation programs are useful for the energy analysis
of buildings in the design phase (5). A wide variety of building
simulation programs have been developed (25). Examples of
these programs are BLAST, EnergyPlus, eQUEST, TRACE,
DOE2, and ECOTECT (20). Crawley (26), Sadineni (27),
and Mirsadeghi (28) present a detailed review of building
simulation programs used in the literature.

EnergyPlus is a well-known, free software program
developed by the U.S. Department of Energy that can be
used to perform whole-building energy analysis (25). It
has two main libraries that are component and template
libraries. It also can analyze many features, from material
alternatives to hourly air values, from metabolic rates to
storage. It provides convenience to decision makers in the
design processes in every region through the detailed climate
files of almost every region of the world. However, no
single energy simulation program offers sufficient capabilities
and flexibilities to analyze integrated building systems and
to enable rapid prototyping of innovative building and
system technologies (29). Once the number of alternatives
increases in the building design process, the time to enter
data into EnergyPlus and the time to evaluate the results
increases. Therefore, there is a need for effective and
practical approaches that mimic the working mechanism
of EnergyPlus. Using simulation programs along with
artificial intelligence techniques will increase the efficiency of
building design processes. In this study, ANN models, which
learn the working structure of the EnergyPlus simulation
program, are developed.

Artificial neural network models consist of six basic
elements. These are layers, weights, neurons, network
structure, training algorithm, and transfer functions. ANN
models generally consist of three layers: input, hidden, and
output layers. Some neurons hold information in each layer.
Each neuron in each layer has a certain weight value.
According to this weight value, the values of the output
neurons vary. Determining the neuron weights is the most
important step in ANN models. Weight calculation processes
are carried out through training algorithms. Information
transmission between the layers is provided by transfer
functions. The network structure of ANN models determines
the form of information transmission. Detailed technical
information and the basic concept of an ANN can be found
in Refs. (30–32).

In order to obtain EnergyPlus-based ANN models, a
sample input data set representing the whole alternative

solution space is generated by considering the different values
of the decision variables. According to this data set, heating
and cooling energy consumptions and CO2 emissions are
calculated with the EnergyPlus program, and a sample output
data set is obtained. ANNmodels are developed separately for
heating energy consumption, cooling energy consumption,
and CO2 emission by using input and output sample data
sets. In the study, EnergyPlus based ANN models are
proposed for cases where there are intensive calculations and
many alternatives.

Life cycle cost assessment (LCA) analysis

Life-cycle cost assessment is an economic analysis technique
that takes into account the investment cost and the periodic
(e.g., monthly and annual) costs that will occur during the
economic life of the building for the project management
processes. It is very effective in making the most appropriate
decision, especially for energy-efficient building designs,
taking into account the investment costs and annual costs.

In this study, heating energy consumption, cooling energy
consumption, CO2 emission, embodied carbon, material
cost, and earthquake repair cost are considered as parameters
of the LCA. Although prediction models are created for
heating energy consumption, cooling energy consumption,
and CO2 emissions, there is no need to create prediction
models for embodied carbon, material cost, and earthquake
repair cost. Since the embodied carbon, material cost, and
earthquake repair cost are material- oriented, there is no
need for estimation since the related parameter values can be
calculated directly with a simple calculation.

Results and findings for a case
study

Building definition

In this section, the proposed methodology was applied to a
small-sized case study. A one-story structure was designed
with residential building features for the case study. The
building has an area of 25 × 25 m2. It also has four flats, two
elevators, two warehouses, a staircase, and a fire escape. The
flats are symmetrical. Each flat consists of four living rooms,
a bathroom, a kitchen, a toilet, and a hall. The materials used
on the floor are sand-cement plaster (12.5 mm), polystyrene
rigid foam (20 mm), reinforced concrete (150 mm), screed
(50 mm), and ceramic (20 mm). Partition walls are in the
form of brick (105 mm) and both- side plaster (12 mm). The
building height is 3 m.

The building model designed in DesignBuilder, which is an
interface program that provides data entry to EnergyPlus, is
shown in Figure 1. The case study building was designed to
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FIGURE 1 | DesignBuilder single-story building model (not scaled).

be cooled to 24◦C when the temperature rises above 28◦C and
be heated to 22◦C when the temperature drops below 18◦C.

In the proposed approach, applying the feature subset
selection to the decision variables for heating energy
consumption, cooling energy consumption, and CO2
emission parameters aims to make the estimation structure
work better. In addition, it will enable the discovery of
hidden patterns between the mentioned parameters and
decision variables.

Feature subset selection

In the case study, two main input attributes are taken into
account. These are building envelope variables and regional
decision variables. The building envelope decision variables
are interior plaster, masonry material, masonry insulation
material, exterior plaster, roof insulation material, the
thickness of these materials, window type, and window/wall
rate. For regional decision variables, climatic zones and
earthquake zones are taken into account. The effects of these
decision variables on heating energy consumption, cooling
energy consumption, and CO2 emission are analyzed and
hidden patterns are investigated. The alternatives used for the
building envelope decision variables are presented in Table 1.
For regional decision variables, four different climate and
earthquake zones in Turkey are taken into account. Four

different regions are selected to represent each climate and
earthquake zone in Turkey. General information about the
pilot regions is given in Table 2.

It is applied to the building in the case study by
generating a hundred different combinations covering each
alternative in each decision variable. That is, heating
energy consumption, cooling energy consumption, and
CO2 emission values are obtained through EnergyPlus
according to a hundred different combinations, considering
the alternatives and pilot regions selected from the building
envelope decision variables. There are more than ten million
alternative combinations in total, including pilot regions.
While determining a hundred different combinations,
alternatives representing all spaces should be determined,
taking into account the worst and best scenarios. Once
the number of alternatives is increased, the time spent on
EnergyPlus will increase. Therefore, its number should be
kept at a reasonable level.

According to the results obtained with EnergyPlus, the
most appropriate input decision variables are determined
for each related parameter by applying the CfsSubsetE-
val approach. A comparison of results with and without
CfsSubsetEval is shown in Table 3. Random Forest is
applied to compare the results. The decision variables
determined as a result of the tree structures obtained
are shown in Table 4. Decision variables obtained as
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TABLE 1 | Building envelope decision variables for the case study.

Materials and Thickness [mm]
External Plaster [10-20-25]

Material Features Materials and Thickness [mm]
Internal Plaster [10-20-25]

Material Features

Cost ($/m2) X (W/mK) Cost ($/m2) X (W/mK)

Lightweight aggregate plaster 15 0.23 Lightweight aggregate plaster 15 0.23
Sand-cement mortar 10 0.72 Sand-cement mortar 10 0.72
Perlite-plaster 20 0.08 Roofing finishes [10-15-20] Cost ($/m2) A (W/mK)
Insulation material [20-30-50-70] Cost ($/m2) A (W/mK) Glass-wool 30 0.036
Glass-wool 30 0.036 Stone-wool 25 0.038
Polyurethane-rigid foam 40 0.026 Glazing type Cost ($/m2) A (W/mK)
Stone-wool 25 0.038 PVC joinery 3-chambered double

glazed 6mm/6mm
35 2.4

Wood-fibred 10 0.043 PVC joinery 5-chambered
double-glazed 3mm/13mm

50 1.798

Wall material [100-200-300] Cost ($/m2) A (W/mK) PVC joinery 5-chambered
double-glazed 6mm/13mm

65 1.772

Aerated concrete 100 0.15 window/wall ratio (0.30)
Block-bims 75 0.2 window/wall ratio (0.35)
Hollow brick 60 0.45 window/wall ratio (0.40)

TABLE 2 | The feature of the pilot regions.

Parameters Units Attributes

Pilot Regions - 1 2 3 4
Climate Zone No. - 1 2 3 4
Seismic Zone No. - 1 3 4 2
SRM o/ % 0.8 0.2 0.05 0.5
Latitude (◦) 38.3949 40.9113 39.9727 39.9058
Longitude (◦) 27.0819 29.1558 32.8637 41.2544
Altitude (m) 29 18 891 1860
PGA (m/sec2) PGA > 4 0.3 > PGA > 0.2 0.2 > PGA > 0.1 0.4 > PGA > 0.3
# of Earthquake (4 < Mx < 5) earthquake/50 years 69 38 14 34
# of Earthquake (5 < Mx < 6) earthquake/50 years 38 13 10 37
# of Earthquake (6 < Mx < 7) earthquake/50 years 3 0 0 4
# of Earthquake (7 < Mx) earthquake/50 years 0 1 0 1
# of Earthquake (4 < Mx) earthquake/50 years 110 52 24 76

a result of feature subset selection will be used to
develop ANN models.

EnergyPlus-based ANN modeling

The number of attributes is reduced by means of the feature
subset selection. Thus, it is possible to generate simpler
models with fewer inputs for ANN models. Notably, since
the effect of the decision variable on each input parameter
may not be the same, the same input decision variables are
not taken into account in ANN models. Therefore, instead of
generating a single ANN model, three different models are
produced for heating energy consumption, cooling energy
consumption, and CO2 emission.

The model structures

According to Table 4, five, four, and seven input neurons
are used for heating energy consumption, cooling energy
consumption, and CO2 emission, respectively. For the ANN
training processes, a hundred-data set determined in the
previous step is used. For each ANN model, feedforward
MLP is used as the network structure. As the training
algorithm, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm is preferred. A single hidden layer is used. Linear,
logistic, tanh, and exponential functions are considered
for the transfer functions. The number of neurons in the
hidden layer is relaxed between 3–11, 3–10, and 4–12 for
heating energy consumption, cooling energy consumption,
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TABLE 3 | The feature of the pilot regions.

With CfsSubsetEval Without CfsSubsetEval

Heating R 0.964 0.961
energy MAE 2566.600 3493.791
consumption RMSE 4203.605 4910.223
Cooling R 0.995 0.955
energy MAE 2566.600 2418.435
consumption RMSE 4203.605 3321.873
CO2 emission R 0.956 0.928

MAE 405.367 526.524
RMSE 510.462 675.785

TABLE 4 | Reduced decision variables with feature subset selection.

Heating Energy
Consumption

Cooling energy
Consumption

CO2 Emission

Climate zone Climate zone Masonry material
Insulation Insulation Masonry

thickness
material material
Seismic zone Seismic zone Roof insulation

material thickness
Roof insulation
material thickness

Window type Seismic zone

Window type Insulation
thickness Window

type
Window/Wall

ratio

and CO2 emission, respectively. In order to determine the
best ANN model for each output parameter, the training
algorithm is run 1,000 times using the STATISTICA64
package program. The properties of the ANN models
generated by obtaining the most appropriate weights are
shown in Table 5.

Sensitivity analysis

The significance levels of the decision variables for each ANN
model are analyzed and given in Table 6. Here, it is observed
that earthquake zones are as important as climatic zones. In
fact, it is interesting to see that earthquake zones are more
important than insulation criteria.

The building envelope LCA analysis

In this step of the study, the LCA approach is applied
for energy-efficient building envelope designs. The LCA
parameters are the cost of materials used in the building
envelope, earthquake-based repair cost, embodied carbon,

heating energy consumption, cooling energy consumption,
and CO2 emission for the case study. Since the analysis
of many alternatives and criteria with energy simulation
programs is time-consuming, ANN models are developed.
In contrast, since the cost of materials, earthquake-based
repair cost, and embodied carbon values are material-
oriented and can be easily calculated, there is no need to
develop an estimation model. The material cost consists
of building envelope and window costs. Exterior plaster,
insulation, masonry, and interior plaster materials affect
the cost of the building envelope. Since window/wall is a
decision variable, the building envelope and window surface
area are not constant (Table 1). For 30, 35, and 40%
window/wall ratios, the building envelope surface area is
210 m2, 195 m2, and 180 m2, and the window surface
area is 90 m2, 105 m2, and 120 m2, respectively. Building
envelope and window costs are investment costs. Other
LCA parameters are costs incurred over the economic life
cycle of the building. Since the LCA approach is cost-based,
each parameter must be converted to cost. The embodied
carbon is carbon emissions that occur during the entire
life cycle of materials (from production to consumption).
The earthquake-based repair cost depends on the material
cost, the magnitude of the earthquake, and the probability
of earthquakes that could damage the building envelope.
If we take into account the risk of earthquakes for each
year during the lifespan of the building, the earthquake-
based repair cost should also be converted to present
value. In addition, the costs of energy consumption, CO2
emissions, and embodied carbon are also converted to
present value. Therefore, the present worth factor (PWF)
should be calculated. Eqs. (1) and (2) are used to calculate
the PWF. The LCA equation is given in Eq. (3). The
parameters used for the LCA approach are shown in
Table 7.

PWF =
(1+ i*)N − 1
i* · (1+ i*)N

(1)

i* = f (x) =


i− g
i+ g

, i > g

g − i
1+ i

, i < g

(2)

Where i∗ is the interest rate adapted for inflation, N is the
lifespan, i is the interest rate, and g is the inflation rate.

LCCi =
4∑

k=1

(ESA · EC +WSA ·WC)SRMk · PoEik (3)

+ ESA · EC + WSA ·WC + (HEC · AHEC
+ CEC · ACEC + CC · ACC + ECA · ECAC)

× PWF for i = 1, 2..., 4
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TABLE 5 | The features of ANN models.

ANN Parameters Heating Energy Consumption Cooling Energy Consumption CO2 Emission

Network type Feedforward MLP Feedforward MLP Feedforward MLP
Training algorithm BFGS algorithm BFGS algorithm BFGS algorithm
Number of hidden layers One hidden layer One hidden layer One hidden layer
Number of input neurons Five input neurons Four input neurons Seven input neurons
Number of hidden neurons Nine hidden neurons Eight hidden neurons Seven hidden neurons
Number of output neurons One output neuron One output neuron One output neuron
Rate of training data 70% 70% 70%
Rate of testing data set 30% 30% 30%
Hidden layer transfer function Tanh Logistic Exponential
Output layer transfer function Tanh Tanh Linear
Training correlation 0.991878 0.976179 0.987460
Testing correlation 0.992607 0.974807 0.978744

For the earthquake-based cost, four different earthquake
zones are determined in Turkey. The earthquake zones are
defined on the expected peak ground acceleration (PGA) for
a return period of 475 years (10% exceedance in 50 years)
(33). In 2018, Turkey’s earthquake zone map was renewed
by Turkey Disaster and Emergency Management Authority
(AFAD) (34). In the new map, the earthquake zones are
separated according to the PGA values. In this study, for
the PoE, the number of earthquakes with Mx > 4 between
1970 and 2020 (50 years) is taken into account in each
region. Since it has been observed that earthquakes whose
magnitudes are 4 and greater than 4 have damaged buildings

TABLE 6a | The sensitivity analysis results of the decision variables
for the heating energy consumption.

Heating Energy Consumption

Decision Variables Importance Levels Weights Rank

Climate zone 48.125 0.533 1
Insulation material 5.458 0.060 4
Seismic zone 25.592 0.283 2
Roof insulation 6.161 0.068 3
material thickness
Window type 4.937 0.055 5

TABLE 6b | The sensitivity analysis results of the decision variables
for the cooling energy consumption.

Cooling Energy Consumption

Decision Variables Importance Levels Weights Rank

Climate zone 20.431 0.379 2
Insulation material 2.278 0.042 4
Seismic zone 24.891 0.461 1
Window type 6.352 0.118 3

in Turkey, Mx > 4 has been considered. The SRM is assumed
as 20, 50, 80, and 100% for significant local damages of
many components (4 < Mx < 5), extensive damage to many
components (5 < Mx < 6), extensive widespread damages
(6 < Mx < 7), and complete widespread damages (7 < Mx),
respectively [81]. For the application, the probability of
at least one earthquake occurring in a year is calculated.
Since earthquakes commonly follow Poisson distribution
(35), the earthquake probability for the magnitude j
in each region is calculated with Eq. (4). Accordingly,
for instance, the probability of at leastoneearthquakeis1-
PoE1,Mx > 4(X = 0) = 0.8892for region 1.

PoE(x) =
e−λ
· λx

x!
(4)

Where e is Euler’s number. A represents the average
(expected) number of earthquakes in a unit period. x is the
number of earthquakes occurring in a unit period.

As a result, a thousand different alternatives were
generated to calculate the accuracy of the results
obtained with the LCA approach. A thousand different

TABLE 6c | The sensitivity analysis results of the decision variables
for the CO2 emission.

CO2 Emission

Decision Variables Importance Levels Weights Rank

Masonry material 1.075 0.030 7
Masonry thickness 13.669 0.377 1
Roof insulation 8.743 0.241 2
material thickness
Seismic zone 4.586 0.127 4
Insulation thickness 2.215 0.061 5
Window type 1.188 0.033 6
Window/wall ratio 4.770 0.132 3
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TABLE 7 | LCA parameters.

Symbols Definitions Symbols Definitions

LCCi Life cycle cost for
pilot region-i

(i = 1,...,4)

HEC Heating energy unit
cost

ESA Envelope surface area AHEC Annual heating
energy consumption

EC Envelope unit cost CEC Cooling energy unit
cost

WSA Window surface area ACEC Annual cooling
energy consumption

WC Window unit cost CC Carbon emission unit
cost

SRMk The seismic repair
multiplier for the

earthquake
magnitude-k
(k = 1,...,4)

PoEik The probability of the
earthquakes with a
magnitude of k in

region i

ACC Annual cooling
emission

ECA Embodied carbon
amount

PWF Present worth factor ECAC Embodied carbon
amount unit cost

TABLE 8 | Summary table.

EnergyPlus Proposed
Methodology

Error (%) Accuracy (%)

Maximum ($) 14523.19 14002.19 0.0359 0.9641
Minimum ($) 10023.21 10481.01 0.0457 0.9543
Mean ($) 12102.38 12472.26 0.0306 0.9694

combinations were applied manually in EnergyPlus. Since
it is almost impossible to manually enter all combinations
into EnergyPlus, randomly selected thousand different
combinations were evaluated. A summary of the results
obtained is presented in Table 8.

Conclusion

Energy-efficient building designs have an important strategic
position for developing countries such as Turkey that
need energy imports. The most important component of
energy-efficient building designs is energy-efficient building
envelopes. A broad perspective is presented that takes
into account energy consumption, indoor comfort, and
environmental effects. By applying LCA analysis, heating,
cooling energy consumption, CO2 emission, material cost
as well as embodied carbon, and earthquake-based cost are
also taken into account. Interior plaster, wall insulation,
roof insulation, wall, exterior plaster, material thickness,
window, window/wall, climate, and earthquake zones are
considered the decision variables. Significance levels of
decision variables for heating energy consumption, cooling

energy consumption, and CO2 emissions were determined.
According to the results obtained, it is observed that
the earthquake zones have a remarkable effect. In future
studies, the scope of the study can be expanded by using
metaheuristic approaches such as GA and PSO, which can
scan the entire alternative solution space.
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