
BOHR International Journal of Computer Science
2023, Vol. 2, No. 1, pp. 21–28
DOI: 10.54646/bijcs.2023.13

www.bohrpub.com

METHODS

Predicting high-altitude vehicle launch opportunities using
machine learning: a preliminary investigation

Jacob G. Haake and Sikha Bagui*

Department of Computer Science, University of West Florida, Pensacola, FL, United States

*Correspondence:
Sikha Bagui,
bagui@uwf.edu

Received: 02 February 2023; Accepted: 18 March 2023; Published: 28 March 2023

High-altitude ballooning, along with other aerospace endeavors, requires extensive preplanning and preparation for
vehicle launching. In ballooning specifically, weather conditions are especially effective and driving whether or not
a launch can occur. As most flights must be shaped around the flight path, both for safety and recovery reasons,
it is imperative that any acceptable flight path and day may be considered. The goal of this project is to minimize,
using machine learning, the complexity and manpower requirements for determining if a launch can occur.
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Introduction

Weather is far from a new concept. Since as early as 650
B.C., humans have been attempting to predict the weather
for events as important as farming or natural disasters to
events as mundane as picnic weather (1). Initially, these
systems were based on viewing clouds and attempting to
use astronomical observations to determine future weather.
Since then, advancements have been made to the point
where artificial intelligence (AI) and machine learning
(ML) have begun to be implemented in modern weather
prediction systems.

Advancements in the capabilities and use of AI and ML
have found their way into many aspects of engineering and
operations. The art of weather forecasting has long been a
struggle of identifying patterns in the Earth’s atmosphere
with numerous factors and variables, including both the
Earth’s atmosphere and external elements such as solar flares
and radiation. While there is a large effort to improve
existing weather models and to create standalone models
based on AI, there is a gap in specialized ML models
dedicated to specific operations involving the weather.
Aerospace endeavors are often locked into timeframes and
dates depending on weather and environmental conditions
and require copious amounts of planning and forethought

to avoid wasted money, potential damages, and potential
delays. Due to the complexity of Earth’s atmosphere and
environmental conditions, a step-by-step process must be
taken in order to identify the most optimal way to tackle such
a broad range of problems.

This research project is a preliminary investigation
into determining which independent variable(s) have the
largest impact on accurately predicting future weather
and subsequent events. This is accomplished via the use
of AI algorithms trained on altitude-based wind speeds.
Future endeavors will be carried out with additional
training on various weather elements, including wind
direction, temperature, pressure, and humidity. While other
researchers have sought to develop algorithms and training
methods to predict specific weather conditions on given days,
this research seeks to determine the most impactful variables
and elements to focus on for the specific application of
predicting high-altitude vehicle launch opportunities. Such
opportunities include rocket launches, high-altitude aircraft,
and the particular focus of this project’s training, high-
altitude balloons.

High-altitude ballooning, along with other aerospace
endeavors, requires extensive preplanning and preparation
for vehicle launching. In ballooning specifically, weather
conditions are especially effective and driving whether
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or not a launch can occur. As most flights must be
shaped around the flight path, both for safety and recovery
reasons, it is imperative that any acceptable flight path
and day may be considered. The goal of this project is
to minimize the complexity and manpower requirements
for determining if a launch can occur to better open up
launch day possibilities. When considering a balloon launch
possibility, several factors must be taken into consideration,
namely, ground wind speed and direction, wind speeds
and direction throughout the altitudes the balloon will be
present in, gust speeds and directions, temperature, and
humidity. Monitoring all of these factors requires a host of
equipment as well as multiple skilled personnel to monitor
this equipment and provide feedback to the launch director.
A balloon launch also takes a large amount of time from
initial equipment setup through to vehicle launch. Reducing
any burden on operators’ preflight or during launch would
increase safety and reliability in these systems.

A typical time frame can see equipment set up at 00:00
lasting through 08:00. During this time, systems must be
monitored by a specialized team. If conditions appear to be
in line with the predictions, vehicle and balloon hardware will
begin to be rolled out at 07:30 and completely set up around
10:30. System testing will occur next, spanning from 10:00
to 11:30. Balloon fill will occur following this, from 11:30
to 12:30. Balloon launch procedures will follow, ending with
vehicle and balloon release around 13:15. This large amount
of time requires stable, predictable conditions while also
requiring trained staff monitoring and setting up systems.

The rest of this paper is organized as follows. Section 2
presents the related works. Section 3 presents the methods.
Section 4 presents the training data. Section 5 presents the
weather models. Section 6 presents the data fields. Section 7
presents the results. Section 8 presents a discussion of the
results. Section 9 presents some limitations of this work.
Section 10 presents the conclusions, and finally Section 11
presents future directions.

Related works

Haupt et al. (2) sought to predict solar power production and
efficiencies based on the weather in the area and available
sunlight. In contrast to that, this project is centered on the
weather conditions and whether or not they provide suitable
conditions for high-altitude vehicle launch. Haupt et al. (2)
utilized a neural network with some additional preprocessing
to form separate regimes. Although this project is not
intending on performing this same preprocessing, it will
follow suit with the usage of an ML model being used for
weather prediction.

Dewitte et al. (3) sought to explain the need for, and
importance of, using AI and ML in the fields of weather
prediction and climate change to minimize the challenges
of insufficient scalability of traditional methods. They

compare various AI/ML architectures, including 4D-Var,
back-propagated deep learning (DL), convolutional neural
networks, and recurrent neural networks. Based on the
resulting accuracy, hardware performance requirements, and
development complexity, Dewitte et al. (3) determined that
any form of the neural network provides better accuracy than
traditional non-AI methods while not requiring too much
additional development effort. They also suggested that pure
AI is not understood enough, and as such, numerical weather
prediction models should be used in conjunction with AI for
the best performance.

Anandharajan et al. (4) discussed the need for using ML to
help predict weather forecasting while including additional
variables like maximum and minimum temperature and
rainfall. Their team determined that a linear regression model
was the best fit for their problem but noted an issue about the
need to manually update weather parameters. A particularly
interesting part of their research was about how they split
up existing data: 20 for cross-validation, 20 for testing, and
60% for training. This allowed them to learn about their
hypothesis’ bias and/or variance to be adjusted.

McGovern et al. (5) covered a wide variety of ML
algorithms present in other systems and research papers, as
well as several they attempted to use too. This paper serves
as a wonderful baseline to direct research to many other
systems that are trying to accomplish similar goals to this
project, such as predicting if hail will occur. McGovern et al.
(5) particularly tried out three new ML algorithms that our
team was unfamiliar with gradient boosting random tree,
random forest, and elastic nets. In addition, their team also
used multiple pre- and post-processing algorithms to further
attempt to refine their predictions.

Research methods

Research design

This research was designed with an iterative approach
through increasingly more complex ML algorithms. Due
to time limitations, the scope of the project was limited
to a preliminary investigation and the viability of more
extensive research. This was done by both accepting the
limited capabilities of the available premade ML algorithms
outlined below and reducing the number of data sources and
types collected and corroborated. While this would prove to
impact the accuracy of the final ML model used, it would
serve to outline some of the key features future researchers
should make note of and improve upon.

Binary perceptron

The project begins with a simple ML algorithm in the
form of a binary perceptron to predict a simple yes or no
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response for a single hour of wind speeds. This algorithm
was implemented using SciKit Learn’s perceptron model in
Python and was trained and tested on single-hour, single-
altitude wind speeds to predict if those conditions were
suitable for a launch attempt. This simple implementation
and solution could be utilized to prescreen incoming data
and highlight days of interest. For this research, this
model served to validate the methods of data collection,
training, and testing but was quickly transitioned out to
more capable models.

Linear regression

From this, the project was expanded to a single-variable
linear regression model to predict the percentage chance of
being able to launch, again using just wind speeds as the
independent variable. SciKit Learn was used once more for
the implementation of their linear regression model. This
component of software was used to begin narrowing in on
predicting future conditions as opposed to the perceptron’s
classifying of a current condition. This model was fed in
a single averaged low-altitude wind speed (LAWS) on an
hour-by-hour basis to predict the chance percentage that
the next time step (hour, day, week) would provide a
potentially suitable launch day. This model would serve
to be a stepping stone for more comprehensive models.
The next model utilized was a single independent variable
linear regression model used to verify that a correlation
in the data could be calculated. A SciKit Learn model
was again used as a stepping stone to a multiple linear
regression model that could utilize more data fields in the
data correlation. The linear regression model was not used
for any results data.

Multiple linear regression

To increase the number of independent variables to
encompass all that are taken into account when looking at
potential launch days, a multiple linear regression model
was utilized. This model was implemented with Statsmodels’
Python algorithm. Due to limitations with Statsmodels’
multiple linear regression model, only three dependent
variables were used at a time. This led to the use of average
wind data in the form of three weather bands, LAWS,
middle-altitude wind speed (MAWS), and high-altitude wind
speed (HAWS). The LAWS band consisted of altitudes
ranging from 0 feet above ground level to 20,000 feet above
ground level. The MAWS band contains an altitude range
of 20,000–51,000 feet. HAWS completes the altitude bands
with a range from 51,000 to 155,500 feet at a lower resolution.
These altitude bands were used to identify if an ML algorithm
could predict future wind speeds with knowledge of the
averaged atmospheric conditions.

Training data

Training data for the ML algorithm were gathered from
a single location, the National Oceanic and Atmospheric
Administration (NOAA). Different weather models were
combined, namely, OP40 and Global Forecast System (GFS),
to produce the highest vertical (altitude-based) resolution
possible from this data source. Data were collected daily, with
some data collected in the morning and some collected in
the evening. The decision to collect at different points in
the day was directed by the distinct difference in weather
patterns in the morning versus afternoon and evening.
These differences allowed for testing the model’s ability to
predict across all possible launch windows. Future research
would benefit from the utilization of additional models,
described below, as well as measured actual data in the
location being studied.

The collected data were then analyzed and labeled
with expected percentage launch chances in the following
manner: data from 1 h in the future were used to
identify the likelihood of a potential launch in the 1 h
time slot. This would essentially train the model to
identify launch chances in 1 h increments based on the
given independent data. It should be noted that these
collected data were analyzed and classified by a human
who has experience in the industry. This means that
although the classification is not random, there is some
invariability due to the human element. However, this is
an invariability that will exist in the true application of an
ML model being utilized to solve the problem expressed
in this project.

Weather models

The existing weather forecasting models were utilized
to mirror how modern meteorologists predict launch
conditions. By using data readily available to most companies
and researchers, this project sought to emulate how such an
application would operate in a commercial environment. As
other AI weather models grow in popularity, it would not be
unexpected to have their output fed into programs such as
this project as inputs for prediction.

Global forecast system

The GFS is a weather forecasting model that offers
moderately accurate forecasts with the advantage of being
able to forecast weeks in advance. In addition, this model
covers forecasting to >45,000 m altitude. Where this model
suffers is in its update speed, being updated only once every
3–6 h, as well as its horizontal gridding, of 28 km within
16 days and 70 km beyond that.
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OP40

OP40 is a model from the National Center for Environmental
Prediction and is a low-altitude weather predictor that
typically generates forecasts up to 3 days in the future. This
model has been found to be highly accurate and can serve as a
strong baseline for predicting launch weather conditions 24 h
in advance. These data were combined with the GFS model to
achieve the desired altitude range of greater than 120,000 feet.

European center for medium-range
weather forecasting

The European Center for Medium-Range Weather
Forecasting is a source of high-accuracy weather forecasting
and reanalysis data. This service is offered as a paid
subscription but can offer better accuracy and data than
more publicly available sources. For this project, these data
were not used due to the cost, but this service is often used
for operations involving high-altitude balloon launches.

Radiosonde

There also exists a source of training data that is not
determined by existing weather models. Radiosonde devices
are weather monitoring systems typically flown under small
1 kg balloons to 42,500 m to gather information about wind
speed, wind direction, temperature, pressure, and humidity.
Hundreds of these devices are launched in the United States
alone daily to collect actual measurements of weather data
throughout the day. These data are then collected and
made publicly available. This project will utilize these data
in conjunction with predictive data to train the AI and
verify its accuracy.

During high-altitude balloon launches and vehicle
recovery, radiosondes can be launched multiple times
preflight as well as pre-splash to verify predictive weather
accuracy. These data are then incorporated into the trajectory
prediction model to influence the predicted flight path for
increased splash location accuracy.

Data fields

Wind speed

Wind speed is at the core of potential launch weather.
This is largely due to how the balloon will act when it is
being filled and being “stood up.” High wind speed will
cause the balloon to “lean” in one direction, causing it to
potentially impact equipment or even the ground if the wind
speed is high enough.

Wind direction

Wind direction is the counterpart to wind speed as it
determines which direction the launch system will need to
move in order to reduce the load on the balloon at launch. If
a launch system does not move “with the wind,” it runs the
risk of the payload being damaged via a pendulum swing in
the direction the balloon is leaning.

Temperature

Temperature is another factor that can affect the quality and
effectiveness of a balloon launch as the temperature of the lift
gas in the balloon highly affects its lift capacity and ascent
rate. These factors must be brought into consideration in
the flight trajectory prediction algorithms and are typically
assumed preflight. On launch day, cloud cover and ambient
temperature must be monitored to ensure that they are
within the bounds set preflight or else there is the risk that
a balloon will be overfilled or underfilled.

Pressure

Pressure is an element that in theory should help an ML
algorithm “learn” to predict low surface wind timings and
improve accuracy in predicting launch conditions. High-
and low-pressure waves or ridges can give indications of
upcoming, or just passing, low surface winds. Typically,
in the Southeast United States, areas in the path of
a high-pressure ridge will experience low surface winds
in the mornings and can give timing windows for
meteorologists to search for.

Results

Perceptron

From inception, it was known that a perceptron model
would be incapable of providing the level of detail required
for actual operational use. Although only used on a small
data set, it was quickly determined that the model would
be horribly inaccurate, most likely due to the lack of
independent variables. In addition, its output is not entirely
helpful as it does not provide much information on how
the decision was made and how confident the model was
in that decision.

Linear regression

The linear regression model quickly showed its shortcomings
and was moved away in favor of the multiple linear regression
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FIGURE 1 | Predicted values vs. actual values with respect to LAWSs
(multiple linear regression model).

model provided by Statsmodels. The shortcomings appear
to be primarily due to the single independent variable being
unable to produce a comprehensive enough function
for future weather prediction. However, this model
could perhaps serve as a low-complexity method of
determining the relationship between wind speed and
wind direction. Generally, lower wind speeds promote
higher variability in wind direction and a simple linear
regression model could serve to identify the likelihood of
variable wind direction.

Multiple linear regression

The multiple linear regression model, while it had only
three independent variables, was able to provide interesting
results that could be analyzed. The complexity involved with
weather prediction and forecasting quickly shows itself in
these results, and as such, the raw values were disregarded
and trends became the more analyzed pieces.

The model struggled to predict the extreme changes in
launch probabilities as the wind speeds changed dramatically.
This is demonstrated in Figure 1, where the model kept
a much tighter range in its launch probability calculations
compared to the actual launch chances. The model also
heavily favored not launching in any conditions despite
several of the testing launch days having above a 70%
chance of launching.

An alternate result that was not being sought after but
became apparent in the graphed results is the appearance
of correlation between high launch probability and low
wind speeds in the lowest altitude bands. Figure 1
shows a distinct downward trend in launch probabilities
as average wind speeds increase. However, it should
be noted that some of the lowest launch percentages
also exist in the lower wind speed sections including
as low as 8 knots.

FIGURE 2 | Low-altitude wind speed (LAWSs) vs. percent error
(multiple linear regression model).

Low-altitude winds (LAWS)

Low-altitude winds are some of the most important factors
in determining potential launch times due to their impact
on the equipment during sensitive time periods, such
as vehicle delivery, checkouts, and final closeouts. The
training data, and subsequently the testing data, largely
favored wind speeds below 13 knots as having a high
probability of launching. Wind speeds greater than 20
knots were almost entirely below 10% with variations to
this only existing if mid-level winds seemed extremely
favorable. As such, it would be expected that the model
would predict extremely high values for slow low-altitude
winds of less than 13 knots. Figure 2 shows that this
assumption is incorrect as there were multiple examples
of the high likelihood of launching at averaged speeds in
excess of 15 knots.

In practice, low-altitude winds show a combination of high
inaccuracy and high variability in time segments with low
wind speeds but a high accuracy with low variability in time
segments with high wind speeds. As demonstrated by the
graph in Figure 2, the high inaccuracy and variability are
mainly captured between wind speeds of 8.5 and 12.5 knots.
This high variability is most likely due to the majority of
testing data containing LAWSs in this range. As expected,
most of the inaccuracy is in an over-evaluation of the wind
speeds as the training data heavily favored these lower
wind speeds. However, there is an unusual jump between
overestimates and underestimates. It is probable that this
is caused by the data labeling taking place with the insight
of specific wind speeds at all altitudes, whereas the training
and testing data are only capable of viewing the averages of
these altitudes. This is a flaw in labeling the data with more
information than is available to the ML model and is covered
later in the paper in the future research section.
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FIGURE 3 | Predicted values vs. actual values with respect to
MAWSs (multiple linear regression model).

FIGURE 4 | Middle-altitude wind speed (MAWSs) vs. percent error
(multiple linear regression model).

Mid-altitude winds (MAWS)

The MAWS band was used in an attempt to identify
the impact of these wind speeds on future LAWSs. As
demonstrated in Figure 3, this band proved to have the most
inconsistent result across the entire band when compared
to the low- and high-altitude bands. Quite frequently, the
actual values jumped between near-perfect launch conditions
and appallingly poor launch conditions. The model struggled
to keep up with these sharp transitions in the lower range
of the band, but it quickly matched them at the higher
range. On the surface, it would be expected that the higher
speeds in this band should imply poor launch conditions,
but this does not appear to be the case as the launch
percentage values seem to match lower wind speeds in
this band. This leaves a question as to why the model
was able to predict strongly at higher speeds and poorly
at lower speeds.

It should be noted that the sharp increase in inaccuracy
occurs at much higher wind speeds than in the low-
altitude speed bracket. Interestingly, although the model
is unable to consistently and accurately predict in the
lower wind speeds in this altitude bracket, it is able to
accurately predict the higher wind speeds, even with their
similar inconsistency. Given that the shape of the graph
in Figure 4 so closely resembles the shape of the LAWS
graphs, the inaccuracy can actually be taken as a measure of
consistency in the model. With further improvements, the
inaccuracy can theoretically be removed while maintaining
the accuracy between altitude bands. Another reason for
the interest in these figures is that the location of the
inaccuracies is clumped, similar to those in the low-
altitude band. This would imply that there is a correlation
between the two bands that warrants further investigation
and explanation.

High-altitude winds (HAWS)

The HAWS band demonstrates a new viewpoint where the
shape in the model prediction closely resembles the actual
values. However, as seen throughout the figures, the model
consistently underpredicts the actual value throughout most
of the data. Oddly enough, there is a large lack of data points
found between 25 and 50 knots. In this section, the model
severely underestimated the launch percentages. This gap,
shown in Figure 5, serves as a bridge between the highly
variable low and high ranges of this altitude band. It would
be difficult to identify a trend or relationship between launch
possibilities and these lower and upper ranges. However,
as Figure 6 demonstrates, this altitude band sees some of
the best prediction accuracies of the three bands. Outside
of the high variability of inaccuracy in the lowest portion
of the altitude band, it maintains a relatively smooth and
highly clumped accuracy when compared to the other two
altitude bands. Much like in the mid-altitude band, it would
be assumed that higher speeds would imply lower chances of
launch opportunities, but Figure 5 shows this is again not the
case. Most of the data points in the highest speed section are
above a 50% chance of favorable launch conditions with the
model consistently predicting just shy of this number.

Combined wind speeds

The combined wind speeds section is where the most
interesting results appear. An obvious inconsistency and
inaccuracy can be identified in the LAWS band below 13
knots. Interestingly, this same bracket can be seen moving
up the next chart in the MAWS band before falling back
to the lower end of the high-altitude band. As identified
earlier in the actual versus predicted figure, Figure 7, the
model appeared to struggle with identifying how to manage
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FIGURE 5 | Predicted values vs. actual values with respect to high
altitude wind speeds (multiple linear regression model).

FIGURE 6 | HAWS vs. percent error (multiple linear regression
model).

the low speeds in the lower wind band. This would indicate
that LAWSs are frequently accompanied by higher MAWSs
and lower HAWSs.

Additionally, Figure 7 demonstrates the potential for ML
models to be able to provide meaningful results. In this
case, the model would be able to provide negative results
in that it would determine when days were most likely
not going to be a strong launch opportunity. With the
model consistently underpredicting the true value, it would
provide conservative estimates on when good launch days
would be available.

Discussion of results

Although the results produced by the ML model appear
to be lackluster in terms of usefulness and capability for

FIGURE 7 | Combination of LAWS, MAWS, and HAWS vs. percent
error (multiple linear regression model).

real-world use, the patterns identified in the results of
the model’s predictions offer a direction to pursue further
research endeavors. With improvements outlined below,
and the shortcomings identified, a more in-depth research
project could be conducted to identify if the patterns
theorized were accurate over a greater span of time and
with greater resolution. If this were the case, a model
could be developed that could serve to reduce the burden
on meteorologists and operations managers while also
reducing the number of delays associated with unacceptable
launch conditions.

The appearance of a correlation between slow wind speeds
at lower altitudes and high launch probabilities, though
expected, points to additional research opportunities. While
the downward trend itself can be explained by lower overall
wind speeds being favorable, the existence of low launch
probabilities at the lowest speeds indicates that there is
potential for more complexity in this assumption. Although
potentially simply outliers, these data points demonstrate
why weather prediction and launch are not as simple
as identifying generalized altitude bands as this project
attempted to do.

It should also be noted that this model was both trained
and tested on real and not simulated or generated data.
Because of this, and the limited timespan that data were
collected in, large swings in accuracy are not completely
unexpected. It is quite possible that there exist differences
in accuracy in year-by-year or even season-by-season
research and testing. Such long-term testing would open
up avenues for further demonstrating ML’s capabilities in
this field as well as demonstrating the existing weather
models’ ability, or inability, to identify localized unusual
weather conditions. Such conditions would be natural
disasters such as hurricanes or weather extremes such as
blizzards and droughts.
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Limitations

The limitations of this project can be mitigated using more
advanced models and a greater range of data captured. As
outlined below in the future research section, mistakes such
as model limitations in independent variable counts can be
avoided entirely. Some limitations, however, such as data
gathering, are largely limited by only being able to gather
data day by day and as such are subject to time. While
historical and reanalysis data can be used, if a research team
or implementor of such a model wanted to use the most
recent and accurate weather prediction models, they would
be subject to this time constraint.

Conclusion

The results of this research demonstrate that there is strong
potential for AI to improve launch window predictions,
both quantitatively and qualitatively. Although a multiple
linear regression model proved to be incapable of properly
predicting launch opportunities on the data set collected,
it did highlight the complexities and potential patterns
developing within the data. The use of more advanced
models, such as DL neural networks, opens up a new
avenue of research and potential commercial application
in solving these complex patterns. In conjunction
with other research, it is likely that such a system
could prove to expand beyond high-altitude launch
prediction and into the world of hazard assessment
or other weather-driven features. In conclusion, there
exists greater complexity to weather prediction that
places a barrier on even lower resolution aspects, such as
predicting windows of opportunity, that might be solvable
with the use of AI.

Future directions

Although seemingly inconclusive, the data and information
found throughout this research reveal that there is additional
information to be uncovered. Through improvements in
the ML algorithm or a switch to more advanced AI,
deeper patterns may be found. Following this, improved
data labeling and classification along with an increase in
independent variables would allow for a more accurate
and complete picture of weather patterns and their effects
on launch conditions. A transition to DL or neural
networks would allow for a large increase in independent
variables and more thorough training. Additionally, these
algorithms would allow for additional dependent and result
variables that could show estimated wind speeds, gusting,
and even direction.

With an increase in resolution created by a change
in the ML algorithm, the data would see an equivalent

increase in data labeling resolution. As mentioned above,
a potential error arose from the data labeling being done
with a better understanding of all of the weather conditions
for a given day whereas the ML algorithm would only
have access to the averaged data. This error would steadily
decline as the resolution on independent variables increased
for the ML model.

If a new ML model was not selected, improvements
could still be made to the data labeling and classification
by adjusting the averaging of wind speed bands. Ideally,
additional levels of wind data would be collected below
1,000 feet and these data would be averaged to create
the LAWS band. This is largely because wind speeds
below 10 knots are common below 1,000 feet and are
highly desirable for launch conditions. When these low-
speed conditions are averaged with conditions up to 20,000
feet, this level of information is quickly overcome by the
larger amount of data found between 1,000 and 20,000 feet
(22 data points).

Also, an increase in independent variables would open
up many doors for pattern recognition and development.
Understanding minute changes in pressure waves would
allow AI to detect pressure waves and with them, expect
low or high wind speeds accordingly. An ability to learn
wind directions would also greatly improve the usability
of the model as it would help greatly with estimating
wind gust chances.
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