
BOHR International Journal of Computer Science
2022, Vol. 1, No. 1, pp. 11–25
DOI: 10.54646/bijcs.2022.03

www.bohrpub.com

ORIGINAL RESEARCH

An efficient hybrid by partitioning approach for extracting
maximal gradual patterns in large databases (MPSGrite)

Tabueu Fotso Laurent Cabrel1,2*

1Department of Computer Engineering, UIT-FV, University of Dschang, Dschang, Cameroon
2Department of Mathematics and Computer Science, FS, University of Dschang, Dschang, Cameroon

*Correspondence:
Tabueu Fotso Laurent Cabrel,
laurent.tabueu@gmail.com

Received: 29 December 2021; Accepted: 19 January 2022; Published: 07 February 2022

Since automatic knowledge extraction must be performed in large databases, empirical studies are already
showing an explosion in the search space for generalized patterns and even more so for frequent gradual patterns.
In addition to this, we also observe a generation of a very large number of relevant extracted patterns. Being faced
with this problem, many approaches have been developed, with the aim of reducing the size of the search space
and the waiting time for detection, for end users, of relevant patterns. The objective is to make decisions or refine
their analyses within a reasonable and realistic time frame. The gradual pattern mining algorithms common in large
databases are CPU intensive. It is a question for us of proposing a new approach that allows an extraction of
the maximum frequent gradual patterns based on a technique of partitioning datasets. The new technique leads
to a new, more efficient hybrid algorithm called MSPGrite. The experiments carried out on several sets of known
datasets justify the proposed approach.

Keywords: pattern mining, pruning search space, maximal gradual support, lattice, adjacency matrix, partitioning

Introduction

Data mining is part of a process known as knowledge
extraction (KDE), which appeared in the scientific
community in the 1990s. It is a fast-growing research
field aiming at exploiting the large quantities of data
collected every day in various fields of computer science.
This multidisciplinary field is at the crossroads of different
domains, such as statistics, databases, big data, algorithms,
and artificial intelligence. The type of data mining algorithm
varies according to the type of data (binary, categorical,
numerical, time series, spatial, etc.) of the dataset on which
the algorithms will be applied, or the type of relationship
between the patterns searched (sequence, co-variation,
co-occurrence, etc.) as well as the level of complexity and
semantics of the analyzed data (1). It is generally about
finding co-occurrences or dependencies between attributes
or items and relationships between objects or transactions
in the dataset, unlike clustering, which is used to find

relationships between objects. Gradual and maximal pattern
mining, discussed in this article, is part of the search for
frequent gradual dependencies between attributes of the
dataset (2). Since automatic KDE has to be performed in
large volume databases, empirical studies already show that
at the level of generalized patterns, association rules, and
frequent gradual patterns, one has to exponentially increase
the size of the search space to be explored in order to extract
useful knowledge. To make better decisions in real life and
to refine the analysis of domain experts in a reasonable
time, the authors have developed many algorithms to solve
these problems of search space reduction and better CPU
and memory performance. Nevertheless, very few works
offer the final customers a reduced number of relevant
patterns extracted. Thus, the technique of mining closed
gradual patterns was developed (3). The goal is to extract a
condensed representation of fuzzy gradual patterns based
on the notion of closure of the Galois correspondence. It
is used as a generator of rules and gradual patterns. We
can cite other classes of algorithms based on multicore

11

www.bohrpub.com
https://doi.org/10.54646/bijcs.2022.03
https://www.bohrpub.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

12 Cabrel

architectures that minimize the extraction time compared to
their sequential versions. We find, in particular, the work of
Negreverge with his Paraminer algorithm (4), the pglcm of
Alexandre Termier. However, very few works are oriented
on the extraction of frequent and maximal gradual patterns.
The specificity of this work is the use of a hybrid approach of
dataset partitioning and SGrite-based.

Objectives

General objective: Extract frequent and maximum
gradual patterns from big database

Specific objective 1: Our algorithm relies, on the one hand,
a reduction of half in the first step of the research space; by
using as a search space, the lattice has at least one positive
term. Two simultaneous traverses of the above mentioned
lattice are performed: an ascendant constructs the candidate
sets of size 1 to a size k, k < n, where n is the total number of
items. During the browse, SGrite join is used, and the other
descendants manage the maximum gradual candidates and
frequencies. This objective is the exploitation of the lattice
with at least one positive term as well as a two-way lag with
a view to further reduce the operations of calculation of the
support and thus the search space.

Specific objective 2: Guarantee extraction in large
databases

Observing the degree of memory saturation during gradual
pattern discovery using Grite, SGrite, and Graank methods
has involved preprocessing to reduce the dataset size (5) in
the case of very correlate or dense data. This adaptation
is necessary to carry out the extraction. However, this
search remains partial and can lead to the loss of quality
patterns; indeed, certain co-variations between the attributes
considered in the original dataset and the rest of the dataset
ignored remain unvalued. To partially solve this problem, we
propose to process a search by partitioning the dataset, which
will be described in section “Presentation of the Hybrid
Extraction Method for Maximal Gradual Patterns.”

Literature review

Definitions

Definition 1. Gradual item (1, 5–8): It is an attribute.
A provided with a comparison operator ∗ ∈ {≤, ≥, <, >}
that reflects the direction of variation of the values for this
attribute A. It is noted as A∗. If ∗ is equal to ≥ (resp. ≤),
then A∗ captures an increasing (resp. decreasing) variation
of the values of A.

For example, A≥, A≤, and S≥ are gradual items induced
by Table 1. They are interpreted as “the more age increases,”
“the more age decreases,” and “the more salary increases.”

Definition 2. Gradual itemset (5–10): A gradual itemset,
denoted by {(Ai,∗i),i = 1...k} or {Ai

∗i, i = 1...k}, is a set of
gradual items that expresses a co-variation of the considered
items. This set is interpreted semantically as a conjunction
of gradual items.

For example, the gradual itemset A>S< deduced of Table 1
means that “the more age, the less salary.”

Definition 3. Complementary gradual pattern (1, 5, 9): If a
gradual pattern M = {(Ai

∗i), i = 1...k}, then its complementary
gradual pattern of the same size is denoted c(M). It is defined
by c(M) = {(Ai

c(∗i)), i = 1...k}, where c(∗i) is the complement
of the comparison operator ∗i.

Note: In the previous works (1, 5), c(≤) = ≥, c(≥) = ≤,
c(<) = >, c(>) = <.

In Table 1, for example, two gradual patterns A> and
A>S< are considered; their complementary is the gradual
patterns A< and A<S>.

Definition 4. Inclusion of gradual patterns: The gradual
pattern X is included in the gradual pattern Y, noted as X⊆Y,
if all the gradual items of X are also present in Y.

For example, from Table 1, the gradual pattern A>S> is
included in the gradual patterns A>S>V> and A>S>V<.

From definitions 3 and 4, we can deduce the two properties
allowing a significant pruning of the search space. The first
property is the equality property of gradual support (1, 5, 11)
and the second is the anti-monotonicity property of gradual
support (1, 5, 10, 11).

Definition 5. Lattice of gradual patterns (5). A lattice of
gradual patterns is a lattice induced by the set of gradual
patterns provided with the inclusion relation. The set of
nodes of the lattice is the set of gradual patterns. An arc that
goes from a gradual pattern A to a gradual pattern B reflects
the inclusion of A in B.

Definition 6. Lattice of gradual patterns with first-term
positive: It is a sub lattice of the lattice of gradual patterns
that only has as a component the gradual patterns of which
at least the first gradual item of each component is positive.
They are noted on the form A≥1 {Ai

∗i }, i = 2...k.
The lattice of gradual patterns is the search space of

frequent gradual patterns which is halved by the lattice with
the first positive term. To illustrate our point, let us take, for
example, Figures 1, 2.

Gradual pattern mining approaches

The linear regression technique described by Huller-Meier
(12) allows for the extraction of gradual dependences
with more support and confidence than the user-specified
threshold. This method only takes into account fuzzy data
and rules with premise and conclusion numbers less than or
equal to two. However, the T-Norm idea, which is part of
this technique, allows us to transcend the size restriction of
the premise and the conclusion of the rules. The weight of
a gradual pattern, also known as Gradual Support (SG) in

10.54646/bijcs.2022.03 13

the method of Berzal et al. (13), is equal to the number of
pairs of distinct objects that verify the order imposed by the
pattern divided by the P total number of couples of different

objects in the database. Thus, 6o,o′∈D x D|o≺Mo′
|

|D|(|D| −1) , where M is
a gradual pattern and D is the database.

Laurent et al. (10) expand on the technique of Berzal et al.
(13), which utilizes the fact that if a pair of objects (o, o’)
validates the order established by a gradual pattern, the pair
(o’, o) does not.

The gradual support of a gradual pattern M is equal to the
length of a maximal path associated with M divided by the
entire number of datasets in the so-called maximum pathway
approach (9, 11, 14, 15). In this method, we have SG(M) =
maxD∈ L (M)|D|

|D| .
Grite serves as the foundation for the SGrite (5, 16)

methodology. It prunes the search space by utilizing the
support’s anti-monotonicity and complementary patterns
properties. The lattice with the first-term positive utilized
reduces the search space by half. Another difference between
SGrite and Grite is that SGrite only takes one sweep of
the dependency graph to compute gradual support, whereas
Grite requires two sweeps. She employs two types of gradual
support computing algorithms, each of which does a single
sweep of the precedence graph.

The SGrite algorithm

The two main activities in the SGrite algorithm are the
creation of candidates and the computation of the support.
As it is run for each candidate, the support calculation
is the most requested and CPU-intensive procedure. The
SGrite algorithm is built on the following notions. In the
definitions that follow, O is the set of objects, and o
and o’ are objects.

Definition 7. Adjacency matrix: The adjacency matrix of a
gradual pattern M is a bitwise matrix that assigns the values
of 1 to every pair of objects (o, o’) if the pair of objects satisfies
the pattern M’s order and 0 otherwise.

A pattern’s adjacency matrix generates a dependence graph
with nodes that are objects, and nonzero adjacency matrix
inputs reflect the dependencies between pairs of nodes.

Definition 8. Father node and son node: Given a pattern
M’s adjacency matrix AdjM, for AdjM[o, o’] = 1, we translate
the fact that o is the father of o’ and o’ is a child of o.

Definition 9. Isolated node: It is a node that is not linked
to another node, i.e., it does not have a father or a son.
Considering a pattern M’s adjacency matrix AdjM, the set of
isolated nodes is defined by: {o ∈ O| ∀o′

∈ O, AdjM[o, o′] = 0
∧ AdjM [o′, o] = 0}.

Definition 10. Root: It is a node that has no parent but is
connected to all the other nodes. For the model M’s adjacency
matrix AdjM , the root node-set is formally defined by {o ∈O|
∀

o′
∈ O, AdjM[o, o′] = 1 ∧ AdjM [o′, o] = 0}.

Definition 11. Leaf: It is a node that does not have a son but
is not isolated. Given a pattern M’s adjacency matrix AdjM,
the leaves node-set is formally defined by {o ∈ O| ∀o′

∈ O,
AdjM[o, o’] = 0 ∃o′′ ∈ O|AdjM [o′′, o] = 1}.

The SGrite algorithm accepts an adjacency matrix, an
object node ∈ O, and a vector of size | O| whose indexes
are the objects of O as input. Before running each algorithm,
we assume that ∀o ∈ O, Memory[o] = −1. Memory[o]
holds the current maximum distance between o and any
leaf throughout the execution of each algorithm. Memory[o]
holds the ultimate maximum distance between o and any leaf
at the end of each algorithm’s execution. The first class of
algorithms updates the values of a node’s parents whenever
the value of this node changes. The second class of algorithms
uses just the final value of a node to update the values of his
parents’ nodes. We have four different variants of the SGrite
method, namely, SGOpt, SG1, SGB1, and SGB2 (5).

Methodology

To achieve our goals, several properties must be considered:
(P1) anti-monotony support, (P2) complementary gradual
patterns, and (P3) use of the frequency of sub-patterns of a
frequent gradual maximum for pruning. The role of P1 and
P2 is already known and shown in SGrite for the upward
traversal for the generation of frequent gradual patterns.
P3 makes it possible in the downward traversal to ignore
frequent gradual sub-patterns of a maximal gradual pattern
that I have to determine in advance. At the same time,
during the extraction process, in the downward path of
the lattice with at least one positive term, we construct the
maximal progressive candidates, which belong to the lattice,
with at least one positive term, hence, the guarantee of the
conservation of the properties of the optimal search space.
In addition, by browsing down, we can reduce the search
space further by chain filtering. Thus, we use to prune, on
the one hand, the set of infrequent gradual sub-patterns
which is applied to the maximal gradual candidates, and, on
the other hand, the sub-patterns of a frequent and maximal
gradual pattern discovered beforehand starting from a set
of the candidate gradual maxima of larger size during the
procedure, and finally, the last pruning is done by calculating
the gradual support to check the frequency of the candidates
and their relevance. To complete the extraction process, there
are two stop conditions. Either the current set of candidates
is exhausted during the upward traverse, or the maximum
number of candidates is exhausted first and the search is
also terminated.

Hypotheses

1. Global time reduction of the support computation (the
one brought by SGrite, omission of the computation

https://doi.org/10.54646/bijcs.2022.03

14 Cabrel

FIGURE 1 | Lattice of gradual patterns obtained with the items of Table 1 (5, 11).

FIGURE 2 | Lattice of gradual patterns with first-term positive obtained from the items of Table 1.

of the gradual support of the frequent sub-patterns,
and the reduction of the depths of the dependency
graphs associated with the maximal candidate pattern),
following the computation of the fusion of the n
gradual items composing the candidate in question.

2. Reduction of the search space.

3. The reduction in the number of gradual knowledge
produced, but with the possibility of listing
them exhaustively.

4. The choice of the size of the different partitions.
To begin, we take 2 partitions, and we also take
partition 1 the biggest possible extractable by SGrite,
and then partition 2 is a supplement of items of the
considered dataset.

Presentation of the hybrid
extraction method for maximal
gradual patterns

In this section, we will explain the general operating
principles of the MPSGrite method. Section “Partition
Working Principle” explains how the partitioning method
works. Section “Principle of Finding Maximum Gradual
Patterns” presents the operation of the algorithm for finding
maximum frequent gradual patterns. The notations used

in this part are summarized in Table 4. It is important to
specify that what motivates this algorithm is its relevance.
Indeed, the algorithm is oriented toward a different concept
from that of “SGrite” and its extensions; partition will have
the particularity of being much more efficient on very
large databases, like the current OLTP1 systems, hence, the
importance of his study.

Partition working principle

To simplify the description, we will limit 2 partitions and
consider a dataset D, which has n items. D is partitioned
into two datasets D1 of size n1 and D2 of size n2, such
that n = n1 + n2. D1 represents partition 1 of the database
containing the n1 first items, while 2 is the second partition
containing the n2 last items of D.

Definition 12. Partition of a database: It is a part of D
which has the same number of transactions as D and which
takes a contiguous subset of the items from the dataset D
representing the items taken into account in the score. Being
denoted by D and I = {ik} k = 1...n the items, nk < n, if Dk the
kth partition that starts with item number l/l = l < n, we have
Dk = (O,I) with I⊆ I and I = {ik}k = l...l + nk−1.

Definition 13. Independence of two partitions of a
database: Let D1 = (O, I1) and D2 = (O, I2) be two partitions

1 OnLine Transactional Processing.

10.54646/bijcs.2022.03 15

of a dataset D = (O, I) / I1 ⊂ I, I2 ⊂ I. They are independent
iff I1 ∩ I2 = Ø.

Example 14. Illustration of partition
Let I = {A, S, V} be the set of attributes of the salary dataset

(see Table 1) where A is the age attribute, S is the salary, and
V is the vehicle location number attribute.

For example D1 = (O,{A, S}) and D2 = (O,{V}) are two
independent partitions of dataset of Table 1.

Order defined on the sets.
Definition 15. Order on items: The order relation on the

set of items of a dataset D, denoted by <I , denotes the natural
order relation of appearance of items in D.

For example, in the dataset of Table 1, we will have an
order between the items A < I S < I V.

Definition 16. Ordered gradual itemset: An ordered
gradual itemset is a gradual itemset that respects the set of
items that constitutes the order defined by its position in
the set of items for the dataset D = (O, I) considered. Being
denoted by M = {Ai

∗i }i∈{1,2,...,n} a gradual k-pattern, it is
ordered iff ∀j, 1 = j < k, where j represents the index of
appearance of the item in the pattern M, and we have Aj < I
Aj+1.

Definition 17. Gradual positive ordered itemset: A positive
ordered gradual itemset is an ordered gradual itemset so
atleast the first term has increasing variation.

For example, the gradual itemsets A > S < , A < S < ,
A > V < , and A < S < V < are ordered gradual itemsets. In
con- trast, S < A > is not an ordered gradual itemset, even
if it has the same meaning and the same gradual support as
A > S < ordered.

Proposition 18. Total order on two gradual items: When
doing a pairwise comparison of gradual items, for example,
A1

1 and A2
2, if A1 < I A2, then A1

1 <m
I A2

2 and vice versa,
but in the case of A1 is equal to A2, the order is induced by
the variation associated with each gradual item as follows: if
∗1 = ∗2, then A1

1 <m
I A2

2; if, in contrast, ∗1 = < and ∗ 2 = > ,
then A1

1 <m
I A2

2, so if ∗1 = > and ∗ 2 = < , then A2
2 <m

I A1
1 .

For example, in Table 1, S < <m
I S > .

Definition 19. Order on two gradual ordered patterns: Let
M1 = { A1i

∗i }i = 1...k1, M2 = { A2i
∗i }i = 1...k2 such that k1 = k2

two ordered gradual itemsets (see Definition 16). They are
ordered iff ∀k = 1...min(k1, k2),A1k < I A2k or A1k

∗k < m

A2k
∗k (see Proposition 18). Note this order relation between

ordered gradual patterns < m
I wethenhaveM1 <m

I M2.
For example, for the gradual itemsets A > S < , A > V <

respects the following A > S < <m
I A > V < , which means

that the gradual pattern A > S < is less than A > V <

following this order relation.
Definition 20. Set of ordered gradual patterns: It is a set of

gradual patterns ordered by the relation <m
I . Being denoted

by LMgO = {Li
mgo}i = 1...n the set of sets of ordered gradual

patterns ∀Li
mgo ∈ LMgO such that Li

mgo = {mj }j = 1...k, then
we have ∀mj, mj+1 e Li

mgo, mj <m
I mj+1, with j = 1...k −1.

Each Li
mgo is a set of ordered gradual patterns.

Principle

The search by partitioning is based on the principle of SGrite,
that is to say, one of these optimal variants SGOpt or SG1 (5)
on each of the independent partitions considered. Once all
the sets of frequent patterns of each of the partitions have
been determined and organized by level, according to the
sizes of patterns, we must initially merge the gradual patterns
of the same level of each partition. The next step is to generate
the missing potential candidates by the method described
below. This process of determining the frequencies of the
whole database goes from a frequent item set of size 1 to the
maximum possible size. The steps below always take place in
the search space for the lattice at the first positive term. We
can summarize the approach in 4 steps:

1. Step 1: determination of the frequent and infrequent
gradual patterns of each partition;

2. Merging, level by level, of the gradual itemsets of all the
partitions, on the one hand, the frequent ones and, on
the other hand, the infrequent ones;

3. Iterative and pairwise generation of candidate patterns,
based on the gradual patterns determined in step 2 as
follows:

(a) Choose two levels to start the generation of
gradual candidates of size k + 1 from the
frequency of size k previously known. The start
level and next level are, respectively, 1 and 2;

(b) For each candidate c k = {A1
∗i

i = 1...k}, frequent,
of the current ordered set of the gradual patterns
consider’s of size k, extract its prefix, Prefixk-1 = {
A1
∗i i = 1...k−1 }.

(c) From the obtained prefix, construct its adjacency
matrix, and find the bounds in the set of ordered
frequent and infrequent gradual patterns of size k
having as prefix, Prefixk−1;

(d) Then, retrieve the value of maximum attribute,
noted as max. It is the gradual item in position
k, resulting from the two sets of size k (frequent
and infrequent) which has the greatest value;

(e) Generate the suffixes that are used for the merge
with Prefixk−1, and noted IGc = {(max + i) < ,
(max + i) > }i = 1...(|I|−max+1) of gradual items.

(f) Determine support for new candidate’s c
new = Prefixfc−1 ∪ e, ∀e ∈ IGc. The frequents
are added to the frequent gradual k-patterns
of level k and the infrequent to the in frequent
gradual k-motfs.

(g) Repeat the process 3-(a) to 3-(f) until the set of
frequently ordered graduals of size k is exhausted.

4. Repeat steps (2) and (3) until the current
candidate se is empty.

https://doi.org/10.54646/bijcs.2022.03

16 Cabrel

Illustration of partition

Example 21. Step 1: collection of frequent gradual pattern
by each partition.

frequent gradual patterns of
partition 1, Table 2

frequent gradual patterns of
partition 2, Table 3

level 2 level 2
A > S < SG: 25.0%; A > S < SG:
75.0%
level 1 level 1
A < SG: 100.0%; A > SG:
100.0%;S < SG:75.0%;S > SG:
75.0%

V < SG: 37.5%; V > SG: 37.5%

Example 22. Step 2: merge the gradual patterns from
partitions 1 and 2 (see Tables 2, 3).

frequent gradual patterns of initial fusion

level 2
A > S < SG: 25.0%; A > S < SG: 75.0%
level 1
A < SG:100%;A > SG:100%;S < SG:75%;S > SG: 75%; V < SG: 37.5%;
V > SG: 37.5%

Example 23. Final step: Set of frequent gradual patterns
of all partitions.

Frequent gradual patterns

level 3
A > S > V > SG: 37.5.0%
level 2
A < S < SG:25.0%;A > S > SG:75.0%;A > V > SG: 25.0%; A > V > SG:
37.5%; S > V > SG: 37.5%
level 1
A < SG: 100%; A > SG: 100%; S < SG: 75%; S > SG: 75%; V < SG:
37.5%; V > SG: 37.5%

In this phase, we can see that in the gradual 2-patterns
those in red color are generated by new patterns formed from
items of the 2 partitions.

Example 24. Collection of frequent gradual patterns
of Sgrite method.

Frequent gradual patterns of Sgrite

level 3
A > S > V > SG: 37.5.0%
level 2
A > S < SG:25.0%;A > S > SG:75.0%;A > V < SG: 25.0%; A > V > SG:
37.5%; S > V > SG: 37.5%
level 1
A < SG: 100%; A > SG: 100%; S < SG: 75%; S > SG: 75%; V < SG:
37.5%; V > SG: 37.5%

In the abovementioned notations, the sets mapCG and
IFk

G all have the two fields: gradual pattern and gradual
support(SG), for each of the elements belonging to these sets.
The sets mapFr, mapFG, mapCG, mapIFr, and mapI FG are
maps or association tables where the keys are sizes of gradual
patterns of each level and the values are a set of k-gradual
patterns ordered by the level k considered (i.e., of key k).

Remark: all sets of gradual itemsets contains the positive
ordered gradual itemsets.

• The Partition-Gen-Sgrite (Dr, minSupport) algorithm
uses the SGrite principle on Dr and returns the set
mapFr local gradual frequent patterns, i.e., gradual
patterns ordered according to the definition 20 which
are frequent in the partition Dr range by frequency size
level. It updates, during the traversal of each level of
the lattice with at least one positive term, the infrequent
gradual patterns of the abovementioned level in the set
mapIFk

r from mapIFG.
• The procedure genCandidateFreqUnionTwoPartition

Consecutive (Fp1, Fp2, mapFG, and mapIFG) allows
to generate and update the set of global frequent and
infrequent candidates obtained from the sets Fp1 and
Fp2 here partitions being processed.

In algorithm 2, the data structure resultatR has five fields:
type Map which represents the indicator on the set choose
between mapFG and mapIFG, where we will find the gradual
item index value of the suffix of the level pattern prefix,
Prefixlevel maximal; min1 and max1 are the index bounds
of over-patterns of Prefixlevel in mapFlevel

G
+1; min2 and

max2 are the index bounds of the over-patterns of Prefixlevel
in mapIFG

level+1. The construction of resultatR is carried
out using the function byPrefixFindPositionsMinMax of
algorithm 2. The function matrixAdjacency determines the
adjacency matrix of the gradual pattern taken as a parameter.
The genCandidatOfALevel function generates candidate
patterns of size level + 1, following the principle described
in step 3-(e) of Section “Partition Working Principle.” In
this algorithm, on line 1, the productCartesian function
generates a set of patterns resulting from the Cartesian
product of the two sets taken as a parameter; here, [get(Fk

p
i
i)]

10.54646/bijcs.2022.03 17

TABLE 1 | Salary data set D.

id Age (A) Salary (S) Vehicle (V)

o1 19 1199 3
o2 27 1849 3
o3 23 1199 2
o4 34 2199 3
o5 29 1999 3
o6 39 3399 3
o7 51 3399 4
o8 40 4999 4

[resp. get(Fk
p

i
i)] represents the ordered set of the gradual

patterns of the level ki of mapFpi(resp. the set of gradual
patterns complementary to each pattern of level ki of
mapIFpi).

The function filterSetByInfrequentSetAndSupportCompute
(candidateFusion) allows: (1) to prune first the candidates of
its set candidateFusion in parameter, which are supermotif
of a inferred pattern of mapIFG. If the candidate to prune is
Ck = {Ai}i = i...k then it generates two new candidates of size
k −1, C1k −1 = {Ai }i=1.....k −1, C2k−1 = {Ai}i = 1...k−2 U Ak
which are added to the potential candidate list. On the other
hand if C k is frequent then, we add Ck at level k of mapFG

and its two frequent sub-patterns C1k−1, C2k−1 build exactly
as above at level k−1 of ma pFG. Once candidateFusion = 0
we have completed the process (1) and we have a valid
candidate set list. Second, in (2) we have to perform another
filtering by support calculation. Here, for any candidate
k-pattern Ck = {Ai}i = 1...k of list, Ck ∈ list: if Ck is frequent
then we add Ck at level k of mapFG, and C1k−1, C2k−1 at
level k−1 of mapFG, otherwise delete C k of list and add at
the end of the list C1k−1, C2k−1 as a new candidate in the list.
We repeat this process until list = 0.

Note: In each of the algorithms below, before calculating
the support of a k-pattern, we check if it does not belong to
one or the other sets ma pFk

G or mapIFk
G, because indeed

the k-pattern may well have been determined during the
ascending scan of the search space of the trellis to the first
positive term or during the descending scan. The interest is to
reduce the number of support computations to the maximum
which is a greedy operation.

Principle of finding maximum gradual
patterns

The method we use is based on SGrite, which itself is
an optimized method of Grite in terms of CPU time for
extracting gradual patterns. Indeed, the MPSgrite method
that we developed in this article has two objectives to achieve.
The first objective is to optimize the time for extracting the
gradual patterns considered, and the second goal is to reduce

TABLE 2 | Partition D1 of D.

id Age(A) Salary(S)

o1 19 1199
o2 27 1849
o3 23 1199
o4 34 2199
o5 29 1999
o6 39 3399
o7 51 3399
o8 40 4999

TABLE 3 | Partition D2 of D.

id Vehicle (V)

o1 3
o2 3
o3 2
o4 3
o5 3
o6 3
o7 4
o8 4

TABLE 4 | Notations used in the partition algorithm.

n Number of partitions in data set D.

(n1, n2,...., nn) array of size n containing the number of items in each
partition; n k is the number of items in the kth partition

Dr 1. rth partition of the dataset.

CG
k

Set of global candidate gradual k-itemsets (potential
frequent gradual itemsets).

mapCG Set of global candidate gradual itemsets (potential
frequent itemsets)

mapFr Set of frequent gradual itemsets in partition Dr

mapFr
k

Sets of gradual k-itemsets ordered (see Def 16) in the
partition Dr

mapFG Set of global frequent itemsets (frequent itemsets).

IFG
k

Set of global infrequent gradual k-itemsets, i.e. for all
partitions.

mapIFr Set of infrequent gradual itemsets in the partition Dr .

mapIFr
k

Sets of ordered infrequent gradual k-itemsets(see Def
16) in the partition Dr .

mapIFG Set of global infrequent itemsets, i.e. for all partitions
(infrequent itemsets)

the number of gradual patterns extracted. Indeed, in real
life, experts in the field say that the fewer patterns extracted,
the easier it is to interpret and make decisions. We first
opt for an approach of dual traversal of the lattice space
to the first positive term from levels 1 to n by SGrite and
simultaneously from levels n to 1. The first problem of this

https://doi.org/10.54646/bijcs.2022.03

18 Cabrel

FIGURE 3 | Different CPU times [Tr. (Resp. It.) denotes transactions (resp. Items)] dataset C250-A100-50, 251 Tr. et 12 It.

FIGURE 4 | Experimentation on dataset C250-A100-50 for the number of patterns gradual extracted. (A) Experimentation 1 data set
C250-A100-50. (B) Experimentation 2 data set C250-A100-50.

FIGURE 5 | Different CPU times [Tr. (Resp. It.) denotes transactions (resp. Items)] for life expectancy. (A) Data set life expectancy developed,
245 Tr. et 20 It. (B) Data set life expectancy developing, 1407 Tr. et 20 It.

combined approach is the generation of the candidates of
the maximal set which is of the order of 2n−1, with n the
number of gradual items of the database. Consequently, the
generation of candidates will have a higher CPU time cost. In
addition, we also note that:

Lemma 25. The greater the number of maximum initial
candidates, the higher the determination of the following
maximal candidate sets, as well as the operation of fusion
of n adjacency matrix composing the n-candidate gradual
motifs considered.

10.54646/bijcs.2022.03 19

FIGURE 6 | Exp. 1 Data set life expectancy developing. (A) Exp. 1 data set life expectancy developed. (B) Exp. 1 data set life expectancy
developing.

FIGURE 7 | Exp. 2 Data set life expectancy. (A) Exp. 2 data set life expectancy developed. (B) Exp. 2 data set life expectancy developing.

FIGURE 8 | Different CPU times [Tr. (Resp. It.) denotes transactions (resp. Items)] forF20Att500Li 500 Tr. et 20 It.

Thus, to keep an optimal method of extracting the
gradual patterns of the abovementioned maxima, it will
be a question of opting for a hybridization method. The
base will be based on the choice to be made according to
the parameter n number of gradual items. Dataset D of n

items, t transactions, and a fixed value p are considered,
representing which method to use. Under these conditions,
if n is less than or equal to p, then MPSGrite uses
the two-way browse method sense, that is, simultaneously
ascending and descending from the lattice to a positive

https://doi.org/10.54646/bijcs.2022.03

20 Cabrel

FIGURE 9 | Experimentation of data set F20Att500Li on number gradual patterns extracted. (A) Exp. 1 data set F20Att500Li. (B) Exp. 2 data
set F20Att500Li.

FIGURE 10 | Different CPU times [Tr. (Resp. It.) denotes transactions (resp. Items)] forF20Att200Li 200 Tr. et 20 It.

FIGURE 11 | Experimentation of data set F20Att200Li on number gradual patterns extracted. (A) Exp. 1 data set F20Att200Li. (B) Exp. 2 data
set F20Att200Li.

term. On the contrary, if n is strictly greater than p,
then a bottom- up lattice traversal approach is used which
first efficiently generates the lattice of frequent gradual
patterns, and then conversely in the descent of the lattice,
by “backtracking,” we extract the frequent and maximal
gradual patterns.

Presentation of the components of the
hybrid method

The search space is limited in each of the components
below to the lattice with a positive term. Two components
of the hybrid method are required, namely, component

10.54646/bijcs.2022.03 21

FIGURE 12 | Different CPU times [Tr. (Resp. It.) denotes transactions (resp. Items)] forF30Att100Li 100 Tr. et 30 It.

FIGURE 13 | Experimentation of data set F30Att100Li on number gradual patterns extracted. (A) Exp. 1 data set F30Att100Li. (B) Exp. 2 data
set F30Att100Li.

FIGURE 14 | Different CPU times [Tr. (Resp. It.) denotes transactions (resp. Items)] data set fundamental, 300 Tr. et 35 It.

1 and component 2. Component 1 takes place
following the path in two simultaneously ascending
and descending directions of the positive lattice, and
its description is carried out in section “Presentation
of the Hybrid Extraction Method for Maximal Gradual
Patterns.”

Component 2: Ascending the positive
lattice

This algorithmic component proceeds in two main
steps: In step 1, it is a question of extracting the
frequent gradual patterns performed by SGrite.

https://doi.org/10.54646/bijcs.2022.03

22 Cabrel

FIGURE 15 | Experimentation of data set fundamental on number gradual patterns extracted. (A) Exp. 1 data set fundamental. (B) Exp. 2 data
set fundamental.

FIGURE 16 | Comparison of execution times on meteorological data made up of 516 trans-actions and 26 items.

FIGURE 17 | Experimentation of data set meteorological on number gradual patterns extracted. (A) Exp. 1 data set meteorological. (B) Exp. 2
data set meteorological.

Once this first step is completed its result will be an
entry for step 2.

In step 2, we generate the maximum gradual patterns from
the frequencies of step 1. During the generation, we must
respect the notion of lexicographic order of Apriori, Grite,

and SGrite. Let m = n is the size of frequent gradual patterns
of maximum cardinality.

begin:

Require: Fp1; Fp2; mapFG; mapIFG;

Ensure: ma pFG; mapIFG;

10.54646/bijcs.2022.03 23

FIGURE 18 | Comparison of execution times on test data made up of 100 tr. and 10 it.

FIGURE 19 | Experimentation of data set test on number gradual patterns extracted. (A) Exp. 1 data set test. (B) Exp. 2 data set test.

{fusion of the frequent patterns of the

highest level of the 2 partitions of

level k1 and k2}

1: candidateFusion←productCartesian

(get(Fpk1
1), (get(Fpk2

2) U (get(Fpk2
2)); {Filtering

of candidates: pruning of over-patterns

of infrequents and infrequents

determined by calculation of the

support}

2: while candidateFusion 6= Ø do

3: candidateFusion = filterSetByInfre

quentSetAndSupportCompute

(candidateFusion);

4: end while

{initial reference level for the lattice

path};

5: level = 1;nextLevel = 2;k = k1+k2;

6: refList←mapFG
level;

7: while level ≤ length(mapFG)−1 and

nextLevel ≤ length(mapFG) do

8: for j = 1 to length(refList) do

9: Prefixlevel ← get(j, refList);

10: resuitatR = byPrefixFindPositionsMin

Max(mapFG, mapIFG

Pre fixlevel, nextLevel);

11: adjPrefix = matrixAdjacency(Prefixlevel);

12: genCandidatOfALevel(mapFG, mapIFG,

resultatR, adjPrefix, Prefixlevel,

nextLevel); adjPrefix, Prefixlevel,

nextLevel)

13: end for

14: level← level + 1;

15: nextLevel nextLevel + 1;

16: refList = ← mapFG
level;

17: if not
∃mapFGextLevel then

18: putToMap(mapFG, nextLevel,∅);

19: end if

20: end while

21: return (mapFG, mapIFG);

Algorithm 1 | genCandidateFreqUnionTwoPartition
Consecutive.

In this case, the set of the so-called frequent maximum
is initialized by all the frequent gradual m-patterns. Then,
one proceeds iteratively to prune the level k−1 of all
the subpatterns which allowed the construction of the
maximum gradual k-patterns previously determined and
purified at iteration k. This process continues in this way
until the current processing value of k is 1. In fact, when

https://doi.org/10.54646/bijcs.2022.03

24 Cabrel

k = 1, the maximum 1-gradual patterns are determined.
This completes the “backtracking” determination of the
maximum step patterns.

Experimentation

This section experimentally compares the performance of
SGRrite and the novel hybrid approach MPSGrite. We
used three sets of data. The first two are test data called
F20Att100Li having 20 attributes and 100 transactions and
F20Att500Li having 20 attributes and 500 transactions (5).
The last set of data is made up of meteorological dataset. For
further experimentation, we have added five other datasets: a
test dataset that is C250-A100-50 and 4 other real ones that
are Life Expectancy developed, Life Expectancy-developing,
wine quality-red, and fundamental.

Description of the datasets

This part presents the data used for the experiments carried
out in this work.

We used a practical database called the weather forecast
downloaded from the site http://www.meteo-paris.com/ile-
de-france/station-meteo-paris/pro/. The dataset comprises
516 practical data recorded over two days (July 22–23, 2017),
which are defined by 26 real numbers including temperature,
cumulative rain (mm), humidity (percent), pressure (hPa),
wind velocity (km/h), wind perceived temperature, or wind
distance traveled (km) (5).

The C250-A100-50 dataset is taken from the site https:
//github.com/bnegreve/paraminer/tree/master/data/gri. For
the reason of memory space, we have reduced the initial
number of items from 100 to 12, because, otherwise, the
extraction is not possible on our computer.

Winequality-red dataset is taken from the site https://
archive.ics.uci.edu/ml/datasets/wine+quality. It is the Wine
Quality dataset related to red vinho verde wine samples, from
the north of Portugal. The goal is to model wine quality
based on physicochemical tests. The dataset’s attributes make
use of the following items: volatile acidity, citric acid, fixed
acidity, residual sugar, free sulfur dioxide, total sulfur dioxide,
density, pH, sulfates, alcohol, and quality (based on sensory
data) (scores between 0 and 10).

These two datasets LifeExpectancydevelopped.csv and
LifeExpectancydevelopping.csv (5) are also the real datasets
taken for the site https://www.kaggle.com/kumarajarshi/
life-expectancy- who that are open-access data. The data
were as collected from the World Health Organization
(WHO) and the United Nations website with the help of
Deeksha Russell and Duan Wang. For this life expectancy
dataset, attributes 1 and 3 are removed and the rest are
used (5). The dataset is designed to answer some key
questions such as: do the different predictors I initially
select actually affect life expectancy? Should countries with

low life expectancy (under 65) increase health spending
to increase life expectancy? Is life expectancy related to
diet, lifestyle, exercise, smoking, alcohol etc.? Is there a
positive or negative relationship between life expectancy
and alcohol consumption? Do densely populated countries
have a lower life expectancy? How does immunization
coverage affect life expectancy? The final merged file (final
dataset) consists of 22 columns and 2,938 rows or 20
predictors. All prognostic variables are immunization factors,
mortality factors, economic factors, and social factors. Due
to the size of the original dataset, we split the data into
two groups: LifeExpectancydevelopping.csv for developed
countries and LifeExpectancydevelopping.csv for developing
countries, where we removed transactions with values empty.

The fundamentals.csv dataset contains metrics extracted
from annual SEC 10K fillings (2012–2016), which should be
enough to derive most of the popular fundamental indicators.
The fundamentals.csv comes from Nasdaq Financials. For
this dataset, we have at the beginning 77 attributes. After
preprocessing which consisted of removing empty- valued
transactions, we derived a dataset with 1,299 transactions
and 74 attributes. The removed attributes are the first
four: stock symbol, end of period, accounts payable, and
accounts receivable, for more information, see https://
www.kaggle.com/dgawlik/nyse?select=fundamentals.csv; for
reasons related to the characteristics of our small memory
computer, we extracted part of the fundamental.csv dataset
for the experiments, which gave us a dataset of 300
transactions and 35 attributes. Transactions are the top 300
and attributes are the top 35 (5).

Evaluation of algorithms

All tests on the datasets presented in the preceding part were
performed on an Intel Core T M i7-2630QM CPU running
on 2.00 GHz× 8 with 8 GB main memory and Ubuntu 16.04
LTS. We investigated a number of support levels for each
dataset and measured the associated execution times (shown
in Figures 3, 5, 8, 10, 12, 14, 16, 18), as well as the number
of retrieved patterns (shown in Figures 4, 6, 9, 11, 13, 15, 17,
19). In these figures, (N It. X M Tr.) represents the number of
items (N) and transactions (M) inside the dataset.

Conclusion

In this research, we describe a method for improving the
efficiency of algorithms for detecting frequent and maximum
gradual patterns by halving both the search space and the
burden of the calculation of gradual supports on big datasets.
Experiments on many types of well-known datasets indicate
the efficacy of the suggested technique. In the future study,
we will analyze larger datasets and investigate the possibility
of distributed processing.

http://www.meteo-paris.com/ile-de-france/station-meteo-paris/pro/
http://www.meteo-paris.com/ile-de-france/station-meteo-paris/pro/
https://github.com/bnegreve/paraminer/tree/master/data/gri
https://github.com/bnegreve/paraminer/tree/master/data/gri
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://www.kaggle.com/kumarajarshi/life-expectancy-
https://www.kaggle.com/kumarajarshi/life-expectancy-
https://www.kaggle.com/dgawlik/nyse?select=fundamentals.csv
https://www.kaggle.com/dgawlik/nyse?select=fundamentals.csv

10.54646/bijcs.2022.03 25

References

1. Oudni A. Fouille de donnees par extraction de motifs graduels:
contextualisation et enrichissement. Ph.D. thesis. Paris: Universite Pierre
et Marie Curie (2014).

2. Aggarwal CC. Data mining: the textbook. Berlin: Springer (2015). doi:
10.1007/978-3-319-14142-8

3. Ayouni S. Etude et extraction de regles graduelles floues: definition
d’algorithmes efficaces. Ph.D. thesis. Montpellier: Universite Montpellier
(2012).

4. Negrevergne B, Termier A, Rousset M, Mehaut J. Para miner: a generic
pattern mining algorithm for multi-core architectures. Data Min Knowl
Discov. (2014) 28:593–633. doi: 10.1007/s10618-013-0313-2

5. Clementin TD, Cabrel TFL, Belise KE. A novel algorithm for extracting
frequent gradual patterns. Mach Learn Appl. (2021) 5:100068. doi: 10.
1016/j.mlwa.2021.100068

6. Ngo T, Georgescu V, Laurent A, Libourel T, Mercier G. Mining spatial
gradual patterns: Application to measurement of potentially avoidable
hospitalizations. In: Tjoa AM, Bellatreche L, Biffl S, van Leeuwen J,
Wiedermann J editors. SOFSEM 2018: Theory and practice of computer
science, volume 10706. Cham: Springer International Publishing (2018).
p. 596–608. doi: 10.1007/978-3-319-73117-9_42

7. Owuor D, Laurent A, Orero J. Mining fuzzy-temporal gradual patterns.
In: Proceeding of the 2019 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). New Orleans, LA: IEEE (2019). p. 1–6. doi: 10.
1109/FUZZIEEE.2019.8858883

8. Shah F, Castelltort A, Laurent A. Handling missing values for mining
gradual patterns from NoSQL graph databases. Future Gene Comput
Syst. (2020) 111:523–38. doi: 10.1016/j.future.2019.10.004

9. Di Jorio L. Recherche de motifs graduels et application aux donnees
medicales. Ph.D. thesis. Montpellier: University of Montpellier (2010).

10. Laurent A, Lesot M-J, Rifqi M. Extraction de motifs graduels par
correlations d’ordres induits. In: Rencontres sur la Logique Floue et ses
Applications, LFA’2010. Lannion (2010).

11. Di-Jorio L, Laurent A, Teisseire M. Mining frequent gradual item sets
from large databases. In: Proceeding of the International Symposium
on Intelligent Data Analysis. Berlin: Springer (2009). p. 297–308. doi:
10.1007/978-3-642-03915-7_26

12. Hullermeier E. Association rules for expressing gradual dependencies.
In: Elomaa T, Mannila H, Toivonen H editors. Principles of data
mining and knowledge discovery, PKDD lecture notes in computer
science. Berlin: Springer (2002). p. 200–11. doi: 10.1007/3-540-4
5681-3_17

13. Berzal F, Cubero JC, Sanchez D, Miranda MAV, Serrano J. An alternative
approach to discover gradual dependencies. Int J Uncertain Fuzziness
Knowl Based Syst. (2007) 15:559–70. doi: 10.1142/S021848850700487X

14. Marsala C, Laurent A, Lesot M-J, Rifqi M, Castelltort A. Discovering
ordinal attributes through gradual patterns, morphological filters and
rank discrimination measures. In: Ciucci D, Pasi G, Vantaggi B editors.
Scalable uncertainty management, lecture notes in computer science.
Cham: Springer International Publishing (2018). p. 152–63. doi: 10.
1007/978-3-030-00461-3_11

15. Aryadinata YS, Lin Y, Barcellos C, Laurent A, Libourel T. Mining
epidemiological dengue fever data from Brazil: a gradual pattern based
geographical information system. In: Laurent A, Strauss O, Bouchon-
Meunier B, Yager RR editors. Information processing and management
of uncertainty in knowledge-based systems, communications in computer
and information science. Cham: Springer International Publishing
(2014). p. 414–23. doi: 10.1007/978- 3-319-08855-6_42

16. Djamegni Clementin T, Fotso Laurent T, Cabrel K, Belise E. Un nouvel
algorithme d’extraction des motifs graduels appele Sgrite. In: Proceeding
of the CARI 2020 - Colloque Africain sur la Recherche en Informatique et
en Mathemathiques Appliquees. Thies, SN (2020).

https://doi.org/10.54646/bijcs.2022.03
https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/s10618-013-0313-2
https://doi.org/10.1016/j.mlwa.2021.100068
https://doi.org/10.1016/j.mlwa.2021.100068
https://doi.org/10.1007/978-3-319-73117-9_42
https://doi.org/10.1109/FUZZIEEE.2019.8858883
https://doi.org/10.1109/FUZZIEEE.2019.8858883
https://doi.org/10.1016/j.future.2019.10.004
https://doi.org/10.1007/978-3-642-03915-7_26
https://doi.org/10.1007/978-3-642-03915-7_26
https://doi.org/10.1007/3-540-45681-3_17
https://doi.org/10.1007/3-540-45681-3_17
https://doi.org/10.1142/S021848850700487X
https://doi.org/10.1007/978-3-030-00461-3_11
https://doi.org/10.1007/978-3-030-00461-3_11
https://doi.org/10.1007/978-

	An efficient hybrid by partitioning approach for extracting maximal gradual patterns in large databases (MPSGrite)
	Introduction
	Objectives
	General objective: Extract frequent and maximum gradual patterns from big database
	Specific objective 2: Guarantee extraction in large databases

	Literature review
	Definitions
	Gradual pattern mining approaches
	The SGrite algorithm

	Methodology
	Hypotheses

	Presentation of the hybrid extraction method for maximal gradual patterns
	Partition working principle
	Principle
	Illustration of partition
	Principle of finding maximum gradual patterns
	Presentation of the components of the hybrid method
	Component 2: Ascending the positive lattice

	Experimentation
	Description of the datasets
	Evaluation of algorithms

	Conclusion
	References

