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The Random Forest (RF) algorithm, originally proposed by Breiman et al. (1), is a widely used machine learning
algorithm that gains its merit from its fast learning speed as well as high classification accuracy. However, despite
its widespread use, the different mechanisms at work in Breiman’s RF are not yet fully understood, and there is still
on-going research on several aspects of optimizing the RF algorithm, especially in the big data environment. To
optimize the RF algorithm, this work builds new ensembles that optimize the random portions of the RF algorithm
using genetic algorithms, yielding Random Genetic Forests (RGF), Negatively Correlated RGF (NC-RGF), and
Preemptive RGF (PFS-RGF). These ensembles are compared with Breiman’s classic RF algorithm in Hadoop’s
big data framework using Spark on a large, high-dimensional network intrusion dataset, UNSW-NB15.
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Introduction

The Random Forest (RF) algorithm, originally proposed
by Breiman et al. (1) and Breiman (2), is a widely used
machine learning (ML) algorithm that gains its merit from
its fast learning speed as well as high classification accuracy.
Since RF works well with high-dimensional data (3), this
robust ensemble ML algorithm is widely used with medical
data (4), gene expression data (5), image processing, pattern
recognition, document retrieval (6), and many other fields
that inherently have high-dimensional data. More recently,
the RF algorithm has also been widely used with the
classification of network intrusion data (7, 8).

Random Forest utilizes a large number of decision trees to
classify data and is less susceptible to overfitting. It works well
with noisy data (9). However, despite its widespread use, the
different mechanisms at work in Breiman’s classic RF are not
yet fully understood, and there is still on-going research on
several aspects of optimizing the RF algorithm.

Azar et al. (4) successfully used genetic algorithms (GA)
with other methods as a preprocessing step in feature
selection. The optimally selected features were then used

in the RF algorithm (4). Other researchers have attempted
to find the best default parameters to better tune the RF
algorithm (10). According to Breiman (2), the accuracy of RF
depends on the strength and correlation of classifiers and the
feature vectors.

This paper looks at controlling the random portions of the
RF algorithm using GAs. Because GAs are frequently used in
optimization schemes, the goal of this work is to fine-tune the
GA so that both RF performance and accuracy are improved.

Contrasting with previous preprocessing solutions,
controlling the random portions of the RF algorithm
would require a new hybrid algorithm; hence, this paper
proposes new ensembles that combine the optimization
of GA with RF, yielding Random Genetic Forests
(RGF), Negatively Correlated RGF (NC-RGF), and
Preemptive RGF (PFE-RGF).

The concept behind RGF was to utilize the ability of GAs
to converge on optimal configurations while still retaining
some randomness. According to Breiman (2), RF handles
noisy data by taking advantage of randomness with the law
of large numbers. Thus, the GA implementation would need
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to accommodate the desirable trait of randomness while
converging on more optimal configurations.

While the classification performance of an algorithm is
important, scalability is also just as important, especially in
today’s big data environment. Hence, in this work, in addition
to creating the new hybrid algorithms or ensembles, the
algorithms or ensembles have been implemented in Spark on
Hadoop’s Map/Reduce framework.

Hadoop (11) is a generic distributed framework that
provides two features most important for big data solutions:
(i) a distributed file system, Hadoop’s Distributed File System
(HDFS), for efficiently storing large data sets and (ii)
an efficient distributed and parallel execution framework
called MapReduce to process data stored in HDFS. Data
stored in HDFS is divided into blocks, and each block
is stored on a different cluster node, allowing for parallel
processing on the nodes. Spark, which sits on top of Hadoop’s
distributed framework, takes advantage of Hadoop’s parallel
distributed framework.

The hybrid algorithms or ensembles were tested using
the UNSW-NB15 (12) dataset, a modern high-dimensional
network intrusion detection dataset with 2.5 million rows,
with the intention of building efficient modern intrusion
detection systems.

To summarize, the novelty of this work lies in building new
algorithms or ensembles that optimize the random portions
of the RF algorithm using GAs, yielding, RGF, NC-RGF,
and PFS-RGF. These algorithms, or ensembles, are compared
with the classic RF algorithm using Spark in Hadoop’s big
data framework using a large, high-dimensional network
intrusion dataset.

The rest of the paper is organized as follows: the section
that follows immediately presents the base algorithms used
in the Big Data Framework, which is followed by the section
that covers the related works. Thereafter, we present the
section that introduces the new ensembles created, which is
followed by the section that presents the fitness functions and
feature metrics used. Thereafter, we present the section that
details the experimentation, which is followed by the section
that presents the results and conclusions. We conclude the
paper with the section that presents the future work.

Background: base algorithms used
and the big data framework

Random forest

The RF algorithm is an ensemble of decision tree
classification or regression algorithms (9). The origin of
the ensemble came from Breiman (2). The decision tree
algorithm alone is prone to inaccurate predictions due to the
combination of noisy data and its implementation (9).

To remedy this, Breiman (2) designed the RF ensemble,
which takes advantage of concepts from statistics. Instead

of relying on one decision tree, the ensemble generates
multiple diverse trees using bagging (short for bootstrapping
aggregation). Bagging is a form of random sampling in which
finite sets of samples are selected randomly and replaced. In
addition to bagging, further randomness is injected into the
ensemble with random feature selection.

During decision tree construction, a random set of features
is selected for splitting. From this set, the best attribute is
selected for splitting using CART methodologies (2). The
combination of bagging, random feature selection, and the
generation of enough decision trees gives random forests the
edge in accuracy.

The theory behind RF works due to the law of large
numbers. The law of large numbers states: For any consistent
random variable, as the number of samples grows, the
average of the provided samples converges up to a limit. This
limit is closer to the true mean of the random variable (13).

Thus, as the number of trees grows, the average
generalization error rate converges upon its true value.
Breiman (2) provides a proof for this theorem in
his original paper.

The classic RF algorithm uses bagging and random feature
selection as its forms of randomization. Each tree selects
random features (or attributes) from the data set when
generating each node. The number of features selected is
usually a parameter set in the procedure, say F. A feature is
selected at each node, and the samples are split.

After the ensemble is trained, the random forest can now
be queried to classify samples. A vote amongst all generated
trees is made to determine the classification of a particular
example. The classification with the largest plurality is the
resulting classification (2). The pseudocode of a classic RF
algorithm is presented in Figure 1.

While Breiman (2) used bagging with random feature
selection, this is not a requirement for the algorithm. Any
type of randomization can be used to create a random forest.
However, Breiman (2) provided insight on how to measure
the performance of randomization on any dataset.

In order for the algorithm to provide optimum accuracy,
the randomization used must do two things: increase
classifier strength and decrease correlation between
classifiers. Thus, datasets are important too. Different
datasets will have different values of natural strength and
correlation. Weaker datasets will tend to have higher
generalized error rates as well.

As stated earlier, the accuracy of a random forest algorithm
is based on the choice of randomness and the dataset.
Breiman (2) ran many tests for multiple datasets. The tests
were run against not only variations of random forest but also
other algorithms.

Breiman (2) particularly focused on comparisons against
Adaboost (14). While Adaboost performed well in terms
of accuracy for consistent data, RF performed better than
Adaboost for datasets that contained noise.
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1 function RandomForest (training set S, feature vector F) 

2 treeList[N] ← empty set

3 for i to N do

4 B ← A bootstrap sample from S 

5 tree ← RandomizedDecisionTree(B, F)

6 treeList.add(tree)

7 end for

8 return treeList

9 end function

10 function RandomizedDecisionTree(sample population B, feature vector F)

11 tree ← empty set

12 If (B has same classification) return classification

13 Else if (B or F is empty) return plurality

14 Fk ← randomly select K features from F

15 A ← select best attribute using CART

16 Fa ← F - A

17 Split based on attribute A

18 for each value in A

19 subtree ← RandomizedDecisionTree(Ev,Fa)

20 tree.add(subtree)

21 return tree

20 end function

FIGURE 1 | Pseudocode for the classic RF algorithm (2).

Genetic algorithms

Genetic algorithms were introduced in 1973 by Holland
(15). Holland (15) described genetic algorithms as adaptive
solutions to optimization problems. The original journal
article depicted the algorithm as a series of trials with genetic
plans. Each trial would have a chance of increasing the
performance of some data structure or program.

Along with the theory behind genetic algorithms, Holland
(15) give theoretical lower and upper bounds on the potential
optimization achievable. Thus, after so many trials, the
offspring no longer produces better results, regardless of
whether a global optimum is reached.

While many variants of the GA exist, most versions can
be broken down into an algorithm analogous to natural
selection or evolution. The basic algorithm has four phases:
initialize the population, selection, crossover, and mutation.

FIGURE 2 | Pseudocode for the genetic algorithm.

Russell and Norvig (16) provide an excellent, simplified
explanation of genetic algorithms using states of a search
space for intelligent agents (16).

An initial population of encoded “genes” is generated
either randomly, naturally, or by some other means. The
encoding should represent a data structure or program of
interest. Encodings are usually long bit strings that appear
analogous to DNA.

Once the initial population is created, a subset of
encodings will need to be selected. The selection process
applies a fitness function to each encoding. The fittest
encodings are selected for reproduction. Encodings are
paired together randomly, and crossover commences.

The crossover phase mixes randomly selected “genes,” or
strings of characters, to create an offspring with genes from
each parent. Once an offspring has been created, mutation
has a chance of occurring. Mutation is a random event in
which the offspring’s encoding is modified in some way.

After the mutation phase, all newly created offspring
encodings are added to the population to be used in the
next iteration (16). Figure 2 presents the pseudocode for the
Genetic Algorithm.

The earlier discussed phases can be combined to form
the basic genetic algorithm. GeeksforGeeks et al. (17)
provide a relatively simple algorithm using these phases. One
important step not yet mentioned is program termination.
There are a couple of ways to terminate a genetic algorithm.

In Figure 2, the algorithm appears to not terminate until
a state of convergence has been reached. Because there is an
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1 function Genetic-Algorithm (population, Fitness-FN) returns an individual

2 inputs: population, a set of individuals

3 Fitness-FN, a function that measures the fitness of an individual

4 repeat 

5 new_population <- empty set

6 for i = 1 to Size(population) do

7 x <- Random-Selection(population, Fitness-FN)

8 y <- Random-Selection(population, Fitness-FN)

9 child <- Reproduce(x,y)

10 if(small random probability)then child <- Mutate(child)

11 add child to new population

12 population <- new_population

13 until some individual is fit enough, or enough time has elapsed

14 return the best individual in population, according to Fitness-FN

FIGURE 3 | Genetic algorithm with threshold.

upper bound on the achievable optimum, the fitness scores of
the population will eventually converge on that limit. Once
convergence has occurred, no new offspring will be better
than the current best encoding (17).

While this is a desirable state, the genetic algorithm can
be subjected to local maxima or minima in some cases.
Alternatively, a threshold can be used. The algorithm from
Russell and Norvig (16) uses such termination, as shown
in Figure 3. Instead of waiting for convergence, a defined
threshold is used to halt execution.

This allows the algorithm to select a good enough
candidate instead of the best possible candidate. However,
caution must be used with this method. Not all arrangements
may meet the threshold. Thus, other safeguards should be
in place to handle these cases. Russell and Norvig (16) use
a timeout to halt execution if the threshold is never met.
Figure 3 presents the pseudocode of a GA with a threshold.

Big data

For this work, Spark was used in Hadoop’s big data
framework. The implementations utilized the Map/Reduce
framework, which is the foundation of Hadoop/Spark.
Spark’s map/reduce takes advantage of the parallelization that
the framework offers. In order for any ML algorithm to
perform robustly, the algorithm must have the ability to scale.

Spark offers such scalability, and RF is conducive to
parallelization. In this design, the RGF implementation maps
its bootstrap samples, which partition one or more samples to
nodes. Each node then generates one or more decision trees,
which are then collected (i.e., reduced) by the Spark driver as
a collection of decision trees.

The driver then maintains the collection of decision trees
in the appropriate class as the actual forest. The RGF
algorithm then takes further advantage of parallelization
during validation. During the testing phase, RGF maps a test
sample to Spark nodes. Each node then queries its collection

of decision trees with each sample and reduces them to a
collection of votes for a particular class.

The class votes are tallied, and the class with the most
votes is the decided class for the sample. This parallelization
enables the possibility of scaling for large datasets. Any
system can continue to add nodes as needed to process more
trees in parallel during both training, testing, and production
queries; however, this is not without cost.

While more nodes tend to add a performance benefit,
more nodes also mean more network overhead and
communication. In addition, Spark occasionally requires
data shuffles between nodes, which is costly in both network
bandwidth and computation (18). Thus, there is a limit
for the potential number of beneficial nodes, such that
beyond that limit, additional nodes will degrade performance
due to overhead.

Related works

Researchers continue to search for new versions of RF to
increase accuracy. Duroux and Scornet (3) found other
versions of RFs that yielded better or equivalent accuracy
compared to the original algorithms. These algorithms
include median and quantile random forests.

Median random forests are a variation of Breiman’s
original RF. The original RF uses bootstrap aggregation
(bagging) with random feature selection (2). At each node
during tree creation, the best feature is selected from
a random set of features from the training set. Feature
selection for splitting is typically based on metrics that
attempt to minimize the correlation of classifiers while
increasing strength.

Median forests are similar to the original random forests
with the exception of random feature selection and bagging.
Instead of using a traditional bootstrap sample, median
forests were used. Additionally, at each node split, one
random feature is selected without replacement, and the
empirical median of the random feature is used to split
the data (3).

Some researchers have also utilized GAs to optimize the
RF-ML ensemble. Azar et al. (4) used GAs as a preprocessing
optimization for feature selection. The optimization would
find the best set of features to input into the RF
algorithm. This optimization was used in tandem with other
preprocessing methods.

Other researchers used more complex methods with GAs.
Elyan and Gaber (19) used GAs with class decomposition
to enhance the RF algorithm (20). Their research mostly
focused on medical diagnosis datasets; however, some
data from other domains was also included to prove
generality (20).

From this research, the algorithm Random Forest Genetic
Algorithms (RFGA) was created, which combines these
methods. RFGA was compared against other competitive
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Algorithm 3 Bagging-RGF 

 

1 function Bagging-RGF(training set S , feature vector F)  

2   treeList[N] ← empty set 

3 bootstrapSamplePool[N] ← GeneticAlgorithm(initPopulation,fitnessFunction) 

4  for i to N do  

5   B ← bootstrapSamplePool[i] 

6   tree ← RandomizedDecisionTree(B, F) 

7   treeList.add(tree) 

8  end for  

9 return treeList 

10 end function  

11 function RandomizedDecisionTree(sample population B, feature vector F) 

12 tree ← empty set 

13 If (B has same classification) return classification 

14 Else if (B or F is empty) return plurality 

15 Fk ← randomly select K features from F 

16 A ← select best attribute using CART 

17 Fa ← F - A 

18 Split based on attribute A 

19 for each value in A 

10  subtree ← RandomizedDecisionTree(Ev,Fa) 

21  tree.add(subtree) 

22 return tree 

23 end function 

FIGURE 4 | Pseudocode for bagging-random genetic forest.

algorithms such as the original random forest algorithm and
AdaBoost. The RFGA generally showed favorable results.

Elyan and Gaber (19)’s motivation to use class
decomposition with GAs to optimize RF is derived
from two points: first, class decomposition can increase
classification accuracy, and second, GAs can optimize the
newly discovered subclasses and RF parameters (20). In this
context, class decomposition refers to the use of clustering
analysis and other techniques to decompose datasets and
discover new subclasses.

Cluster analysis is the process of partitioning datasets
into groups or clusters in which each observation in a
cluster is similar in some way (9). For RFGA, the k-means
clustering algorithm was used to discover new clusters
(20). The justification for using class decomposition by
Elyan and Gaber (19) is based on evidence of increasing
use of clustering in medical datasets and the random
forest algorithm.

Ensembles generated

Two ensembles were created using the RGF: the bagging-
RGF and the pre-emptive RGF.

Bagging-RGF

The first ensemble attempts to control the randomness of the
bootstrap samples. For each tree t in the set of generated trees
T, a random bootstrap sample Bt is selected from a training
set D with replacement (2). Instead of randomly selecting
each bootstrap sample, a variation of the genetic algorithm
is used to generate samples.

Let each sample s, in D, be uniquely indexed from 0
to |D|. We can encode a bit string E such that each
bit indicates whether a sample is selected or not. We
will then need to specify a fitness function f, such that
minimizes the out-of-bag error used to validate random
forests. Some challenges with this approach will need
to be addressed.

The genetic algorithm converges upon either a local
or global minima/maxima (15). This convergence may
positively or negatively affect the accuracy of the algorithm.
Additionally, finding a good fitness function may be difficult.
One potential measurement is to ensure fewer duplicate
samples are included.

The replacement aspect of the bootstrap sample is to
allow for some duplication (2). Since bagging is completely
random, there is a chance some forests may contain too
many duplicate samples. Therefore, a good potential fitness
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Algorithm 4 PFS-RGF 

 

1 function PFS-RGF(training set S , feature vector F)  

2   treeList[N] ← empty set 

3 featureSetPool[N] ← GeneticAlgorithm(initPopulation, fitnessFunction) 

4  for i to N do  

5   B ← a random bootstrap sample 

6   tree ← RandomizedDecisionTree(B, featureSetPool[i]) 

7   treeList.add(tree) 

8  end for  

9 return treeList 

10 end function  

11 function RandomizedDecisionTree(sample population B, feature vector F) 

12 tree ← empty set 

13 If (B has same classification) return classification 

14 Else if (B or F is empty) return plurality 

15 Fk ← randomly select K features from F 

16 A ← select best attribute using CART 

17 Fa ← F - A 

18 Split based on attribute A 

19 for each value in A 

20  subtree ← RandomizedDecisionTree(Ev,Fa) 

21  tree.add(subtree) 

22 return tree 

23 end function 

FIGURE 5 | Pseudocode for pre-emptive-RGF.

function is to measure the amount of duplication across
the samples and use a threshold to reduce any duplication
beyond the limit.

With the right configuration, this may produce consistent
results and reduce out-of-bag errors caused by duplication.
Another option or variant is to generate a pool of
bootstrap samples and then randomly select from it with
replacement, allowing for duplication. We will refer to this
algorithm as bagging-RGF. Bagging-RGF is presented in
Figure 4.

Pre-emptive feature selection-RGF

The second ensemble uses GAs to generate random trees in a
RF. Let N be the number of trees generated in a RF algorithm.
Any particular tree t can consist of f number of features
in a feature vector F. Therefore, a tree t can be encoded as
a bit string, where 1 or 0 indicates whether a feature is in
the tree or not.

Allow each bit position to represent a feature, with each
feature having a unique index. We can then use a GA to create
a pool of feature sets for each tree. Each tree’s construction
will only use a selected feature subset. For this particular
ensemble, we can use the CART calculations/methodology
from Breiman (2) to evaluate a particular configuration.

This may reduce the number of trees required to get
a decently accurate RF. Similar challenges will also be
experienced with this solution. Convergence and local
optima may negatively affect results. This algorithm will
be referred to as “pre-emptive feature selection RGF” or
“PFS-RGF.”

Each proposed algorithm focuses on enhancing a
particular aspect of the RF algorithm. These aspects include
out-of-bag error, the number of random trees, and tree
depth. While these are important, the overall goal is to retain
or improve the accuracy of RF. Therefore, each algorithm
will need to be tested for accuracy.

Another common problem with GAs is that they
require an initial population in order to produce child
configurations. Each algorithm will have to create a
random set of configurations for the initial population. The
cardinality of the initial population can be configured as a
parameter of the algorithm, and experiments will need to be
conducted to tune it to an optimal value.

Additionally, performance enhancements will be required.
Instead of selecting the fittest individual, a variant of the GA
could be used to create a genetic pool of encodings. We can
define a minimum fitness level required to only take the fittest
subset of the children.
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Fitness functions and feature metrics

Since the encodings used in the GA will represent features,
a fitness function will need to measure the quality of each
feature. Several metrics and methods exist to score attributes.
Correlation analysis is a typical measurement of quality in
features (9). The correlation of two variables shows how
they are related and can be determined through multiple
methods. The most common are the chi-squared test and the
correlation coefficient (9).

The chi-squared test is used on nominal data using
frequency tables. The correlation coefficient can be calculated
using the covariance of two variables divided by the product
of their standard deviations (13). The correlation between all
features can be calculated in a correlation matrix.

While correlation measurements are valuable, correlation
does not guarantee better performance. Two variables may
appear to be correlated but may not be correlated at all
in reality. Thus, different metrics will be required to fully
measure a feature. Principal component analysis (PCA) may
be of use to measure the importance of features. PCA is a
form of dimensionality reduction used to select key features
or components of a dataset.

A weighted summation of correlation and inclusion of
features in PCA can be used to calculate a score. Since
we need to know the correlation between every feature, an
average correlation score can be used. Allow Fi and Fk to be
arbitrary features in a feature vector F of cardinality n, with i,
k≤ n and i /= k. Let the average correlation score for a feature

Fi be:

Ci =

∑n
k=0 CORR(Fi, Fk)

n
s.t. k6=i

where the function CORR is an arbitrary measurement of
correlation. The feature’s average correlation score can be
used in an equation to calculate a weighted score with
other measurements.

For example, if PCA is performed on a dataset, a subset
of features would be merged and selected. If a feature is
selected, a weight can be added, increasing the chances that
the feature will be included in a genetic coding population.
The full fitness function may appear as follows:

f (i) = w1Ci + w2pi + g(i) s.t. pi ∈ {0, 1}

where w1 and w2 are arbitrary weights, pi is a variable
indicating whether feature Fi is chosen during PCA, and the
function g(i) is an arbitrary mapping that includes any other
metric that may affect the final score.

Some of the challenges this project encountered included
measuring correlation and/or covariance between discrete
and continuous variables. Several methods exist for dealing
with measuring variables of different types. Chi-squared tests
measure the correlation of discrete variables (13).

Negatively correlated fitness function

Another option is to use a negatively correlated fitness
function. Breiman (2) discuss how highly correlated data

TABLE 1 | Results for RF, bagging-RGF, NC-RGF, and PFS-RGF.

Averages for 30 or less trees Recall (%) Precision (%) F-Measure (%) Runtime

Algorithms
Random forest 85.61 79.02 81.25 277.42
Random genetic forest 86.54 77.41 79.81 229.58
Negatively correlated random genetic forest 86.55 77.30 79.60 225.64
Pre-emptive random genetic forest 56.20 56.92 29.59 191.84
Averages for 30 to 60 trees
Random forest 87.15 80.23 82.67 310.49
Random genetic forest 87.61 78.24 80.88 954.38
Negatively correlated random genetic forest 87.53 78.19 80.78 656.04
Pre-emptive random genetic forest 55.16 56.69 27.29 408.52
Averages for 100 or more trees
Random forest 87.33 80.08 82.57 456.51
Random genetic forest 87.73 77.93 80.54 980.46
Negatively correlated random genetic forest 87.76 78.08 80.61 988.99
Pre-emptive random genetic forest 55.62 56.00 27.90 869.94
Overall averages
Random forest 86.61 79.69 82.09 343.83
Random genetic forest 87.29 77.84 80.42 642.92
Negatively correlated random genetic forest 87.17 77.75 80.20 560.56
Pre-emptive random genetic forest 55.79 56.68 28.49 515.50
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tends to perform less well when used with RF (21). Breiman
(2) explain that the randomness injected in RF should
minimize the mean correlation between all generated trees.

Since trees are generated by the combination of sample
distribution and features, correlated features may tend to
produce the same types of trees. Thus, marking highly
correlated features as bad may improve the performance
of the generated models. The fitness function is the
trivial opposite of the previously mentioned correlation
function:

f () = 1− C

Experimentation

The data

Experimentation was done using the UNSW-NB15 (12)
dataset. This dataset, published in 2015, is a hybrid of real-
world network data and simulated network attacks and is
comprised of 49 features and 2.5 million rows.

There are 2.2 million rows of benign traffic and 300,000
rows of attack traffic that comprise nine different modern
attack categories: fuzzers, reconnaissance, shellcode, analysis,
backdoors, DOS, exploits, worms, and generic. Of the
attack categories, some categories had an extremely small
number of attacks; for example, analysis only makes up
0.8% of the dataset, backdoor only makes up 1% of the
dataset, shellcode only makes up 0.5%, and worms make up
less than 0.5%.

Hence, due to the highly unbalanced nature of classes, re-
sampling techniques using both up and down sampling were
used to balance the data. Approximately five hundred of each
attack category were used in most trials.

Data processing

The features in this dataset are made up of: five flow
features like source IP, destination IP, source port number,
and so on; 13 basic features like source of destination
bytes, destination of source bytes, source bits per second,
and so on; content features like source TCP window
advertisement value, destination TCP window advertisement
value, source TCP base sequence number, and so on; 10
time-related features like row jitter, destination jitter, row
start time, and so on; eleven additionally generated features;
and a class label.

The dataset contained both nominal and numeric data.
All nominal data were encoded for training and testing. The
numeric data also contained data with varying ranges. All
data was scaled using a Min/Max scaler.

The experimentation

The experiments were carried out over multiple automated
trials (at least over 1000 trials for each run). Each trial
consisted of extracting and preprocessing training/testing
datasets. Once the data were extracted, three models were
generated: RF (the classic RF), bagging-RGF, NC-RGF, and
PFS-RGF. The same processed training sets were used for the
runs on all four algorithms.

Model configuration

Each RF (regular and genetic) is configured with the same
settings per trial. Each trial can vary the many properties of
RFs, including the number of trees, bootstrap samples, etc.
The optimal number of trees was determined via empirical
results. Automation scripts trained and tested models with a
range of trees between 30 and 100. Bootstrap samples were
also varied using a percentage of the total dataset.

Results and discussion

Results for the classic RF, RGF (bagging-RGF), NC-RGF, and
PFS-RGF for less than 30 trees, 30–60 trees, 100 or more
trees, and overall averages are presented in terms of recall,
precision, F-measure, and runtime (Table 1).

Recall, or Attack Detection Rate (ADR), is the effectiveness
of a model in identifying an attack. The objective is to target
a higher ADR. The ADR is calculated by:

Recall = TP/(TP+ FN) (1)

Precision is the positive predictive value, or the percentage of
classified attack instances that are truly classified as attacks.
Precision is calculated by:

Precision = TP/(TP+ FP) (2)

F-measure is the harmonic mean of precision and recall.
The higher the F-measure, the more robust the classification
model will be. The F-measure is calculated by:

F−measure = 2∗((Precision∗Recall)/(Precision+ Recall))
(3)

As can be seen from Table 1 and Figures 6–9, it is clear
that for 30 or fewer trees, the RGF and NC-RGF performed
slightly better than RF in terms of recall or ADR, but the
precision and F-measure of RF were slightly better than the
RGF and NC-RGF. PFS-RGF performed the worst in all three
categories—recall, precision, and F-measure. And there was a
similar trend in 30–60 trees and 100 or more trees. And these
trends are also reflected in Figures 6–8.

The highest recall, or ADR, was obtained by the NC-
RGF Forest at 87.76% for 30 or fewer trees, and the highest
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FIGURE 6 | Average recall by number of trees.
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FIGURE 7 | Average precision by number of trees.
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FIGURE 8 | Average measure by number of trees.
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FIGURE 9 | Average runtime by number of trees.

precision and F-measure were 80.23 and 82.76%, respectively
for RF for 30–60 trees.

In terms of overall averages, RGF performed the best
and NC-RGF performed the second best in terms of recall,
and RF performed the best in terms of precision and
F-measure.

In terms of the overall runtime, RF performed the best,
taking the least runtime, and RGF took the highest runtime.
But for 30 or fewer trees, NC-RGF performed the best, with
the lowest runtime amongst the tree algorithms (NC-RGF,
RGF, and RF), and RGF performed the second best. Overall,
the PFS-RGF had lower runtimes in a couple of the scenarios,

and it did not perform well on the classification metrics of
recall, precision, and F-measure.

Overall, from Figures 6–9, it can be seen that, of the
four algorithms, RF, RGF, NC-RGF, and PFS-RGF, the
performances of RF, RGF, and NC-RGF were very close, and
RF performed well in terms of runtime in Spark’s parallel big
data environment.

Future work

With the results of RGF, we would like to further train
RGF models with different types of fitness functions and



10.54646/bije.2022.09 51

observe the results. Additionally, improving the runtime
performance of each algorithm would be a priority for
any further research. Some alternative methods could be
explored. For example, a simple feature map could suffice as
a fitness function.
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