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A collision-free path to a destination position in a random farm is determined using a probabilistic roadmap that
can manage static and dynamic obstacles. The position of ripening mushrooms is a result of picture processing.
A mushroom harvesting robot is explored that uses inverse kinematics at the target position to compute the state
of a robotic hand for grasping a ripening mushroom and plucking it. The Denavit–Hartenberg approach was used
to create a kinematic model of a two-finger dexterous hand with three degrees of freedom for mushroom picking.
Unlike prior experiments in mushroom harvesting, mushrooms are not planted in a grid or design but are randomly
scattered. At any point throughout the harvesting process, no human interaction is necessary.
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Introduction

This provides pointers to contemporary research on
employing robotics in agriculture. The emphasis is on
automation of the process of mushroom plucking. The
method is applicable for the plucking of mushrooms if
they are cultivated in a bed or even otherwise, if they are
cultivated randomly on a farm. Many times, mushrooms are
ready but there is little skilled labor available to pluck them;
this situation causes a significant loss to mushroom farmers
because the mushrooms perish immediately. A dexterous
robotic hand model proposed in this paper is a solution
to overcome these losses. We employ the probabilistic
roadmap planning algorithm for a robot to reach the ripped
mushrooms by avoiding the static and dynamic obstacles
in its path. Inverse kinematics (IK) has been employed for
letting the hand reach the exact location of a ripped bud
and letting the fingers decide a configuration that holds the
mushroom. The hand holding the mushroom is then moved
vertically up. The action results in mushroom-plucking. First
of all, the mushroom cultivation considered here is as an
intercrop and is considered to be carried out in discrete
clusters on a big farm. To the best of our knowledge,

this situation hasn’t been considered by any contemporary
researchers in their studies.

The requirement for a dynamic environment is for the
same. There is no one best algorithm for handling the
dynamic environment. So, based upon the parameter
values, the probabilistic motion planning has been
recommended. IK is not a new idea. However, we didn’t
find people using it for harvesting. So the combination is
a novelty. The objective of this research is to theoretically
analyze several possibilities and suggest a feasible framework
for a problem of commercial importance. Unlike the other
contemporary works in this domain, our proposal doesn’t
call for any human intervention; the analytical treatment
explained in this paper is self-explanatory; it doesn’t call for
proof by implementation.

The use of a probability road map (PRM) for farm
navigation is proposed for robotic mushroom harvesting in
a random field. (PRM is a sampling-based 2-step method
that includes roadmap construction and querying.) IK is
employed for plucking the ripened mushrooms.

In this paper, we briefly sketch the steps of the procedure
for farming mushrooms, followed by a concise literature
survey of the automation of robotic mushroom harvesting.
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FIGURE 1 | Schematic of a harvesting robot.

Extending the earlier work stated in the survey, we discuss
PRM for the planning of robotic motion within the
mushroom maze or random plantation, with static obstacles.
The method is extended to find the roadmap in environments
with dynamic obstacles. It checks whether or not a robot is in
an obstacle-free configuration and proceeds accordingly. The
method is capable of dealing with robots with many degrees
of freedom and having diverse constraints, and it has been
shown to be probabilistically complete, i.e., the probability
of failure for a planner to find a solution trajectory, if one
exists, converges rapidly to zero as the number of collision-
free samplings of the workspace increases (1–5). The core
of our mushroom harvesting robot is an algorithm for
encountering static obstacles by a path-finding robot (6–
8). The PRM computes a collision-free path between two
ripened mushrooms with a local planner.

The basic idea is to check if the roadmap constructed to
avoid static obstacles also works with dynamic obstacles, i.e.,
obstacles moving at a given instant. If it works, then the path
is built; if not, the edges that meet the moving obstacles are
marked as blocked and construction of an alternative path is
attempted (1, 2). A five-step procedure for the PRM in such
an environment has been described later.

The design of a dexterous robot hand is driven by the
task of plucking the targeted mushroom assigned to it. We
propose a two-step process: first, an assembly of two fingers
that is analogous to a thumb and a pointing finger of a human
hand to get a grip on the stem of the mushroom bud that is to
be plucked; in the next step, the stem is uprooted. The joint
angles of fingers are calculated by employing IK.

The advantages of the proposed methods are as follows:

(i) Identification of ripened mushrooms by employing
image processing

(ii) The path with the least possible collision possibilities
by using dynamic PRM gives a more realistic
perspective of the environment.

(iii) Minimizing mushroom damage while plucking

(iv) Cost optimization in terms of labor, resources, and
plucking cycles

(v) Minimizing the mushroom wastage due to
environmental factors like humidity and temperature

The six steps involved in mushroom farming are spawn
production, compost preparation, spawning, spawn running,
casing, and fruiting. Since these steps are not relevant for
motion planning, we will not consider them here.

A mushroom harvesting robot (Figure 1) is made up of
three components: (i) a recognition system that recognizes
mature mushrooms and confirms their positions; (ii) a
wheeled moving system that goes along the routes to reach
the mature mushrooms; and (iii) a picking system that grasps
and plucks the mushrooms at the specified place (9, 10).
This study introduces and builds a unique robotic model to
conduct moving and selecting actions effectively using input
from a recognition system.

After the literature survey, the third section describes
the PRM algorithm and the IK model. The details of our
proposed robotic hand are provided in the fourth and
fifth sections, followed by a discussion in the sixth section
of the results of this research, and the conclusion in the
seventh section.

Brief literature survey

A maze-like structure is conceived for a robot to move
through the field to carry out harvesting activities. Given
suitable image specifications, e.g., cap size, proximity to other
mushrooms, etc., a typical mushroom harvesting system
must be able to identify and pick target mushrooms at
suitable times (11). Even mild damage to the mushrooms
affects the shelf life and selling price. It is a challenge to
design a robotic system with the required precision in terms
of size and location of the mushrooms, so as to facilitate
picking them and carefully placing them into a container,
without causing any damage or contamination to them or
their neighbors (12).

A computer model of a mushroom farm suitable for a
conceived robot was constructed to test the robot’s efficiency.
An implementation of the robot was successful in plucking
80% of the mushrooms on a real farm of the same
specifications (11). A camera-captured image of a mushroom
farm is processed to identify if some of the mushrooms in
a group or block are ripe and hence ready for plucking.
These mushrooms are picked while keeping the damage to
the others at a minimum (13).

Probabilistic road map for motion
planning of a robot within a random field

First, we discuss the PRM method for the planning of robotic
motion with static obstacles. Then the logic is extended to
find a roadmap with dynamic obstacles.
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FIGURE 2 | Example of a roadmap for a point robot in two-dimensional Euclidean space. Shaded areas are obstacles. The small circles are
nodes of a graph, and the edges represent obstacle-free paths between adjacent nodes.

The PRM is a sampling-based 2-step iterative method that
includes roadmap construction and querying (see algorithm
and Figures 2, 3 later). It determines whether a robot
is in an obstacle-free configuration space Qfree (for more
information, see Figures 2, 3).

The core of our mushroom harvesting robot is a PRM
algorithm for encountering static obstacles (2, 7, 8). The
following algorithm for the navigation of a robot through a
mushroom farm is an implementation of Refs. (14–19).

Algorithm for static obstacles

Definitions

1. A roadmap is an undirected graph G = (V, E), where
the nodes in V represent a set of ripened mushrooms, and
each edge in E is a collision-free path between two nodes
computed by a local planner. See Figure 2.

2. Nodes qinit and qgoal are user-provided inputs. They
are, respectively, the initial and final nodes in a path to be
discovered by the algorithm.

3. Querying: Let Connect Qinit be a list of neighboring
nodes in the roadmap in the order of their distances from
qinit, and similarly, let Connect Q goal be a list of neighboring
nodes in the same roadmap in the order of their distances
from qgoal. Try connecting qinit to each of its neighboring
nodes, and qgoal to its neighboring nodes; call the nodes a′

and a′′, respectively. Search the graph G for a sequence of
edges in E connecting a′ to a′′. Convert this sequence into
a feasible path for the robot by computing the corresponding
local paths and concatenating them. The local paths can be

stored in the roadmap. The whole sequence, qint-a′-. . .-a′′–
qgoal is a feasible path for a robot. Among the feasible paths,
find the shortest path on the roadmap between qinit and qgoal
by employing an appropriate algorithm—one of the A∗, D, or
D∗Lite algorithms (20–24).

Algorithm for static obstacles. Repeat steps S1 and S2
below, until all mushrooms in the node set G are covered

S1 (construction). For a given workspace, construct a
roadmap in a probabilistic manner, i.e., randomly select a
configuration of nodes (provided by image processing), using
some sampling distribution.

S2 (querying). Given an initial configuration qinit and
goal configuration qgoal, find the shortest path connecting
qinit and qgoal.

Remark: The robot is supposed to move and pluck all the
mushrooms along this path, removing them from the graph.
Then, the two steps of the algorithm are to be repeated.

Figures 2, 3 illustrate the two phases of the iterative path
finding algorithm. In Figure 3, the shortest path from qinit to
qgoal is marked with thick lines.

Algorithm for dynamic obstacles

The basic idea is to check if the roadmap constructed to
avoid static obstacles also works despite dynamically moving
obstacles at a given instant. If it works, then the path is
built. Otherwise, the edges that meet the moving obstacles are
marked as blocked and construction of an alternative path
is attempted (25). The two ends of the blocked edges are
joined locally using a rapidly exploring random tree (RRT)

https://doi.org/10.54646/bijiam.2022.01
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FIGURE 3 | Example of a query with the roadmap. Nodes qinit and qgoal are first connected to the existing roadmap through nodes a′ and a′′.
The search algorithm returns the shortest path, denoted by a thick dark line.

technique. RRT is an algorithm that searches non-convex,
high-dimensional spaces quickly by randomly constructing
a space-filling tree. The tree is built progressively from
random samples selected from the search space and is
intrinsically inclined to expand toward huge unexplored
sections of the issue. It is commonly used in dynamic robotic
motion planning (19, 26–28). In a dynamic environment, the
initial and goal configurations are also moving entities, and
therefore the new path has to be constructed by considering
their new positions.

We now describe a five-step procedure for the PRM in
dynamic environments.

1. Roadmap labeling and solution path search
After receiving the dynamic updates, the planner

iteratively performs the following two operations alternately
until a valid path is found or all connections are attempted:

(a) connection of a query node (qinit or qgoal) to the
nodes of the roadmap, and (b) search for a valid path
inside the roadmap.

Given that the obstacles are moving, a solution is achieved
when all edges stay collision-free. The collision-causing
edges are blocked, and the result is used to recreate that
specific segment of the roadmap’s dynamic connectivity. The
modified connectivity is then used in the following iteration
to choose the best candidate nodes in the roadmap to locate
further probable connections between the query nodes.

2. Query node connections
At each iteration, the candidate nodes are selected by

decomposing each statically connected component into three
subcomponents: (i) nodes potentially reachable from qinit
(i.e., there exists a path with no blocked edges); (ii) nodes
potentially reachable from qgoal; and (iii) nodes that are
currently not reachable from the query nodes qinit and qgoal.
This method avoids many costly updates of edges that are not
required to answer the connectivity query.

3. Local reconnections
The details of connectivity trails in the roadmap from

the qinit and qgoal are maintained in a rapidly exploring
random tree (RRT) structure (27), using which the alternate
paths are constructed to connect the end vertices of the
blocked edges. A new connection from the query nodes
to the static roadmap is attempted when the blocked edge
reconnection fails.

4. Node insertion and cycle creation (28)
If the roadmap is unable to provide collision-free

connectivity between qinit and qgoal, a few nodes are added
to it and the necessary labeling is performed. The disjoint
components in the static roadmap are linked through the
connectivity between the new nodes. This technique achieves
efficiency by avoiding the creation of unnecessary edges and
nodes inside the roadmap.

The four steps discussed earlier are illustrated in Figure 4.
5. Edge labeling
The current positions of all the moving obstacles are

checked against the edges. An edge is blocked if one or many
obstacles are found colliding with it. The label employs the
dynamic programming approach. The location information
and the results of collision tests are simultaneously stored in
an edge-tree structure (Figure 5). During the next call to the
edge labeling, if the location Mi of a moving object matches
a stored location, further computation is not necessary: the
results of the previous collision tests are retrieved and further
collision tests are cancelled. Otherwise, the new location Mi
is inserted into the edge-tree structure while maintaining
the details of the last-checked positions. Older positions
are removed from the data structure to reduce the size of
the roadmap. When an obstacle stops moving, it is treated
as a static one.

(Indices for edge, moving obstacle, and key position are for
the storage structure).
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FIGURE 4 | (A) A static roadmap is completed in the configuration space, (B) During queries, it is found that a link in a solution path is broken
due to a dynamic obstacle, (C) An RRT technique is used to reconnect edges broken by dynamic obstacles, and (D) if the existing roadmap
does not yield a solution, new nodes and edges (dotted lines) are inserted, and thus an obstacle-free path from qinit to qgoal is found. (Observe
that the query nodes qinit and qgoal are themselves changing dynamically).

Kinematics for robotic hand motion

Getting a roadmap ready is a task that enables a robot to reach
the ripened mushrooms at the nearest possible place from its
current location. The next task is to model the motion of the
robot hand (the end effector) to reach a ripened mushroom.

The design of a dexterous robot hand is driven by the
task assigned to it. Different models have been discussed (29,
30). We discuss an assembly of two fingers (analogous to a
thumb and a pointing finger of a human hand) that gets a
grip on the stem of the mushroom bud to be plucked, and
next, the process of uprooting the stem. (A five-finger hand,
like that of a human, would be too heavy and complicated
for the current purpose, taking up more space and potentially
harming neighboring buds).

A diagram of this proposed mushroom plucking robot
hand is shown in Figure 6. The first finger link in the
structure is known as the base, and the end link is known as
the end effector.

The required angular displacements in the finger links
through the motions at the finger joints are computed by
employing kinematics, i.e., the study of the motion of bodies
without consideration of the forces that cause the motion.

Kinematics is of two types: forward and inverse. In the
case of the robotic hand, forward kinematics generates the
location of the end effector given the angular displacement at
each joint. On the contrary, if the location of an end effector
is known, IK computes the required angular displacement at
each finger joint (31–35).

In the following paragraphs we discuss the design of a
robotic hand for automatic mushroom plucking.

The IK computations for the finger simulating the pointing
finger are shown later. The coordinates of a mushroom to be
plucked are the driving parameters. The computation of the

thumb follows the same logic. The thumb differs from the
index finger in that it has one fewer joint.

The links have an ordered structure in which each link has
its own coordinate system and is positioned relative to the
coordinate system of the previous link. The position of the
link i in the coordinate system of its ancestor is obtained by
computing the joint angle (34, 36–43).

The transformation matrix between two adjacent
connecting joints is calculated using the DH parameters
in Formula (1) and Table 1, where si indicates sin θi, ci
indicates cos θi (i = 1, 2, 3), αi−1 is the twist angle, ai−1 is
the length of linkages, and di is the offset of the linkages. The
transformation matrix of the manipulator finger is obtained
by multiplying the transformation matrix of each connecting
link i−1

i T (i = 1, 2, 3, 4), which is a function of the three joint
variables (θ1, θ2, θ3, θ4). Where θ4 = 0.

Step 1: Holding a mushroom stem
(Xi, Yi, Zi) represents an axial frame of reference. For

i = 0, it represents the coordinates of the base; the value of
i increases by one to denote the coordinates of the next joint.
The link after the last joint is the tip, i.e., the end effector.
Hence, (X3,Y3, Z3) is the frame of reference for the end
effector of a pointing finger (Figure 7), while for the thumb it
is (X2, Y2, Z2).

Step 1.1: Compute the D–H parameters of the pointing
finger, as in Figure 8.

Explanation: The transformation matrix between two
adjacent connecting joints can be calculated by the D–H
parameters in Formula (1) and Table 1. where si indicates
sin θi, ci indicates cos θi (i = 1, 2, 3), αi−1 is the twist angle,
ai−1 is the length of linkages, and di is the offset of linkages
The transformation matrix of the manipulator finger can
be obtained by multiplying continuously the transformation
matrix of each connecting link i−1

i T(i = 1, 2, 3, 4), which is

https://doi.org/10.54646/bijiam.2022.01


6 Mohanan and Salgaonkar

FIGURE 5 | Edge-tree structure.

a function of the three joint variables (θ1, θ2, θ3, θ4), where
θ4 = 0.

Step 1.2: Given the D–H values and the base coordinates
of a rigid body, we compute the coordinates of its tip
by generating the D–H matrices at all joints [matrices
(2), (3), (4), and (5) below] and taking their product
(0

4T = 0
1T1

2T2
3T3

4T). Note that i – 1 is the base of the link and
i is the successor link.

i−1
i T =


Cθi

SθiCαi−1
CθiSαi−1

0

−Sθi
CθiCαi−1
CθiSαi−1

0

0
−Sαi−1

CαI−1
0

ai−1
−SαI−1 di
Cαi−1di

1

 (1)

where S and C represent the sine and cosine functions.
Hence, we have

0
1T =


Cθ1
Sθ1
0
0

−Sθ1
Cθ1

0
0

0
0
1
0

0
0
0
1

 (2)

1
2T =


Cθ2
Sθ2
0
0

−Sθ2
Cθ2

0
0

0
0
1
0

l1
0
0
1

 (3)

2
3T =


Cθ3
Sθ3
0
0

−Sθ3
Cθ3

0
0

0
0
1
0

l2
0
0
1

 (4)
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3
4T =


1
0
0
0

0
1
0
0

0
0
1
0

l3
0
0
1

 (5)

0
4T =


C(θ1 + θ2 + θ3) −S(θ1 + θ2 + θ3) 0
S(θ1 + θ2 + θ3) C(θ1 + θ2 + θ3) 0

0 0 1
0 0 0

l1Cθ1 + l2C (θ1 + θ2)+ l3C(θ1 + θ2 + θ3)

l1Sθ1 + l2S (θ1 + θ2)+ l3S(θ1 + θ2 + θ3)

0
1

 (6)

Inverse kinematics has multiple solutions for a specific
position and orientation of the fingertip.

We solve the matrix for a given position px, py by assuming
the following orientation:

n
i T =


C(θ1 + θ2 + θ3)

S(θ1 + θ2 + θ3)

0
0

−S(θ1 + θ2 + θ3)

C(θ1 + θ2 + θ3)

0
0

0
0
1
0

px
py
0
1

 (7)

Step 1.3: Compute θ

We want to compute θ1, θ2, and θ3 only; we do not need
to compute 4

0T. We can work with 3
0T as follows:

3
OT = 0

1T1
2T2

3T =


C(θ1 + θ2 + θ3) −S(θ1 + θ2 + θ3)

S(θ1 + θ2 + θ3) C(θ1 + θ2 + θ3)

0 0
0 0

0 l1Cθ1 + l2C (θ1 + θ2)

0 l1Sθ1 + l2S (θ1 + θ2)

1 0
0 1

 (8)

Comparing (7) and (8), we obtain values for px and py

px = l1Cθ1 + l2C(θ1 + θ2) (9)

py = l1Sθ1 + l2S(θ1 + θ2) (10)

Square both sides of the equations (9) and (10), add them and
set Cθ1

2 + Sθ1
2 =1

px
2
+ py

2
= l12

+ l22
+ 2l1l2Cθ2

Cθ2 =
px

2
+ py

2
− l12

− l22

2l1l2
(11)

Sθ2 =

√
1− Cθ2

2 (12)

θ2 = atan(θ2, Cθ2)

FIGURE 6 | Model of a two-finger robot hand.

Writing equations (9) and (10) in the form

px = k1Cθ1 + k2Sθ1 (13)

py = k1Sθ1 + k2Cθ1 (14)

where k1 = l1 + l2Cθ2 and k2 = l2Sθ2, and assuming
r =

√
k1

2
+ k2

2, γ = atan(k2, k1), k1 = rCγ and k2
= rSγ

We substitute these values in (13) and (14), to obtain

px

r
= CγCθ1 + SγSθ1 = C(γ+ θ1)

py

r
= CγSθ1 + SγCθ1 = S(γ+ θ1)

γ+ θ1 = atan(py/r, px/r) = atan(py, px)

θ1 = atan(y, x)− atan(k2, k1)

θ3 can be obtained by using C(θ1 + θ2 + θ3) and S(θ1 +

θ2 + θ3)

Let (θ1 + θ2 + θ3) = atan (Sω, Cω ) = ω

θ3 = atan(Sω, Cω)− (θ1 + θ2),

where Sω = S(θ1 + θ2 + θ3) and Cω = C(θ1 + θ2 + θ3)

https://doi.org/10.54646/bijiam.2022.01
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TABLE 1 | D–H parameters of pointing finger [from Ref. (35)].

# Joint i di(joint
distance)

ai−1(link
length)

αi−1(link
twist)

θi(joint angle)

1 0 0 0 θ1

2 0 l1 0 θ2

3 0 l2 0 θ3

4 0 l3 0 0

Hence, the joint angles are

θ1 = atan(py, px)− atan(k2, k1) (15)

θ2 = atan(θ2, Cθ2) (16)

θ3 = atan(Sω, Cω)− (θ1 + θ2) (17)

Step 2: Uprooting the stem of a mushroom
Let the upward force to realize the plucking/uprooting be

provided by means of an upward movement of the hand,
causing δ change in its y-coordinate; there will be no change
in the x-coordinate of the end effector’s position nor in the
angles at the finger assembly.

Initially, the angle ϕ at the joint that connects the assembly
of two fingers to the wrist-like structure will have some value.
The elevation in the end effector’s position modifies this angle
to the one shown in Figure 9.

The following are the inverse kinematic computations that
allow the robot-hand to reach its new position ():

sin ϕ =
py+δ

l0
, cos ϕ =

px
l0

where l0 is the length of the
joint.

tan ϕ =
sin ϕ

cos ϕ
=

py + δ

px

ϕ = atan(py + δ, px)

Observe that steps i and i+1 are carried out at time
instances i and i+1, respectively. These activities on the
time axis facilitate the preservation of the states of the
subassemblies while planning the movements at the joints
connecting them. In this case, the position of the fingers
holding the stem remains unchanged in the next step while
the stem is uprooted.

Algorithm: Formalization of automatic mushroom
harvesting robot

Construction of a collision-free path in a farm of ripened
mushrooms at some time instant

1. //Data:

2. A = ` × d /∗ the dimension of a rectangular
maze formed by random cultivation of mushrooms
that provides a specific path for a robot to navigate for
plucking mushrooms.

FIGURE 7 | Model of pointing finger.

FIGURE 8 | Denavit–Hartenberg (DH) frame for joints.

3. ∗/

4. Let c1, c2, c3, . . ., cn cameras in the maze at time instant
tk

5. {ci}, 1 ≤ i ≤ n, /∗ images captured by camera ci,
1 ≤ i ≤ n, ∗/

6. V =
⋃n

i = 1 {ci} /∗ the vertex set V for a mushroom
plucker to work with.∗/

7. //Results:

8. // The average cost of mushroom plucking in this
method

9. //Begin

10. G = resultant subgraph from V
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11. /∗ Employ the construction phase of the PRM to
find out vertex clusters within radius u of the robot
such that there exists a collision free navigation path
connecting any two vertices of a cluster. The inter-
cluster connectivity is taken care of by a local planner.
Let G be the resultant subgraph ∗/

12. W = cost matrix

13. wi j = cost of traversal /∗ the cost of traversal from the
i-th pluckable

14. Mushroom to the j-th pluckable mushroom ∗/

15. Let Pgoal = { } /∗ initially. ∗/

16. Let vs and vt be two randomly selected vertices of G

17. Employ PRM querying with vs and vt on G and get a
path P connecting the two. Let Vp be the set of vertices
that comprise P.

18. if P is the spanning path:

19. then append P to Pgoal and stop

20. else:

21. G = G\Vp < G is obtained by deleting the vertices of
Vp from the original G >

22. Select v1 and v2 randomly from the vertex set of G

23. if wt1 > wt2 :

24. then vs = v2 and vt = v1

25. else:

26. vs = v1 and vt = v2

27. append vs. to Pgoal

28. Go to step 17

29. Compute the total cost of Pgoal, i.e., the summation of
the costs of traversal from i-th vertex to i+1-th in Pgoal,
where i = 1 to k < k+1 is the length of the path Pgoal >

30. /∗ Reaching, gripping and plucking the mushrooms on
a given path ∗/

31. /∗ Let v1, v2, ...,vN be the vertices (of the pluckable
mushrooms) on Pgoal. ∗/

for i = 1 to N:

Traverse vi

Read the elevation of the pluckable mushroom so that
we get its

coordinates in a three-dimensional frame

Employ IK to compute the angles at each joint of the
robot-hand such that the robot-fingers will reach and
hold the pluckable mushroom

Employ a suitable mechanical process to realize the
gripping of the mushroom

Compute the change in elevation of the mushroom
holding hand such that the mushroom will be uprooted

Employ a suitable process to move the robotic hand
and pluck the mushroom.

The average cost of mushroom plucking in this
method = Average cost of traversal of a node in
path P goal + cost of gripping a mushroom + cost of
uprooting the mushroom.

32. //End.

Discussion

Below we have presented algorithms for the automation of
mushroom harvesting, with a focus on the following areas:

(i) Identification of ripened mushroom by employing
image processing

(ii) Using dynamic PRM to obtain a collision-free path
(this is a novel feature not found in the literature)

(iii) No human intervention is required for obstacle
avoidance, as this is done by the PRM algorithm itself

(iv) Application of IK to compute the coordinates of a
mushroom plucking robot

FIGURE 9 | Wrist movement for uprooting mushroom.

TABLE 2 | Approximate costs of manual mushroom harvesting
on a 1 acre farm.

Recurring costs per harvesting cycle

Items Cost (Rs)
Labor 50,000
Fertilizer and spores 20,000
Electricity and water 30,000
Transportation 20,000
Miscellaneous expenses 5,000
Total per harvesting cycle 1,25,000
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(v) Minimizing damage to mushrooms while plucking
(vi) Cost optimization in terms of labor, resources, and

plucking cycles
(vi) Minimizing mushroom wastage due to environmental

factors like humidity and temperature

Brief cost details

Mechanization of operations has arisen in practically every
area of the farming sector. This is a side effect of the reduction
in the population that engages in farm labor as industrial
development takes place. In other words, machines step in
whenever and wherever human labor becomes unavailable,
inefficient, or expensive.

The all-too-real problem faced by farmers generally—
mushroom farmers in the present case—is the non-
availability of labor for the timely harvesting of crops. Due
to this, mushrooms get over-ripe or damaged, resulting in
losses to farmers.

It is stipulated that the problem can be solved by
robotic automation. The speed of harvesting is greater, so
the duration of harvesting is less. Additionally, machines
mitigate human factors like fatigue and lack of diligence. As a
result, large-scale and low-cost farming becomes feasible with
such automation.

The costs in mushroom farming are listed in Table 2.
These figures can vary depending on the circumstances,

but the order of magnitude is correct. If three crops can
be obtained yearly, the annual profit will be in the range
of Rs. 6,00,000.

Note: It is important to account for the one-time
capital expense of Rs. 3,00,000 toward the raw material for
constructing the sunshade and the additional fabrication
cost. In addition, there is a periodic maintenance cost. But
we have not done so, for it would take us far away from our
research. It is suffice to note that these costs can be amortized
over time and covered by the substantial profits.

It is altogether another matter to estimate the cost of
designing and fabricating a robotic hand, mounted on a
chassis that can travel on a farm. This too falls well outside
the scope of this research. We assume that as international
products reach our country and as indigenous R&D activities
take place, such a robot will become available in the future.

Summary and conclusion

Diverse technologies have been employed in the automation
of agricultural activities. Mushroom harvesting is a step-
by-step procedure, so it is possible to design a harvesting
robot made out of three major parts: a recognition system,
a moving system, and a plucking system.

The recognition system gets photographs of the
mushrooms from several cameras mounted in the field.

Image processing algorithms are employed to identify
ripened mushrooms. This software converts the field into a
graph, with individual ripened mushrooms as vertices, and
with edges joining vertices corresponding to neighboring
mushrooms. (Details of the image processing algorithms are
outside the scope of the present study.) This graph will be
altered and traversed by the PRM algorithms so as to avoid
static or dynamic obstacles. The moving system is a wheeled
chassis controlled by the PRM algorithm. The plucking
system is a robotic hand. Angles at the different joints of the
dexterous robotic fingers are computed by employing IK
such that first the fingertips reach the ripened mushroom
bud and hold it; next the fingers move upward so that the
mushroom is plucked; and third, the robotic hand places the
mushroom in a container without damaging it.

The novelty of our research is as follows:

(i) This is the first time that PRM algorithms are being
proposed for navigation inside mushroom farms.

(ii) Unlike previous research in mushroom harvesting,
mushrooms are not planted in a grid or some pattern
but are randomly distributed.

(iii) No human intervention is required at any
stage of harvesting.

(iv) Robotic automation reduces crop wastage
due to unavailability of labor and untimely
harvesting of mushrooms.

(v) Harvesting and other expenses are reduced, compared
to those with human labor.

(vi) A kinematic model of a two-finger dexterous hand with
three degrees of freedom for plucking mushrooms was
developed using the Denavit–Hartenberg method.

(vii) IK techniques of reaching the ripened mushroom give
more precision in plucking.

(viii) There will be no limitation or restriction on large
scale cultivation and harvesting, and this will provide
economies of scale.
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