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A brain tumor is a medical disorder faced by individuals of all demographics. Medically, it is described as the spread
of non-essential cells close to or throughout the brain. Symptoms of this ailment include headaches, seizures, and
sensory changes. This research explores two main categories of brain tumors: benign and malignant. Benign
spreads steadily, and malignant express growth makes it dangerous. Early identification of brain tumors is a crucial
factor for the survival of patients. This research provides a state-of-the-art approach to the early identification of
tumors within the brain. We implemented the SegResNet architecture, a widely adopted architecture for three-
dimensional segmentation, and trained it using the automatic multi-precision method. We incorporated the dice
loss function and dice metric for evaluating the model. We got a dice score of 0.84. For the tumor core, we got a
dice score of 0.84; for the whole tumor, 0.90; and for the enhanced tumor, we got a score of 0.79.

Keywords: brain tumor, 3D segmentation, brain tumor segmentation, 3D convolutional neural network, fully
convolutional neural network

1. Introduction

A tumor is an abnormal growth of cells in the brain that
may or may not be cancerous. Tumors are generally classified
into two classes: benign and malignant. Benign tumors are
considered non-cancerous, i.e., they grow locally and do not
spread to other tissues. They can be fatal if they develop near
vital organs like the brain, even after being non-cancerous.
Malignant tumors are considered cancerous. New cells are
constantly produced in our body to replace the old ones;
sometimes DNA gets damaged during this renewal process,
so the new cells develop abnormally. These cells continue
to multiply faster, thus forming a tumor. Malignant tumors
can spread and affect other tissues. Tumors that affect the

central nervous system are known as gliomas. Following are
the constituents of gliomas:

• Edema: Finger-like projection, an agglomerate of fluid
or water. FLAIR and T2-weighted sequences produce
the best results.

• Necrosis: Collection of dead cells. Best seen in the T1
post-contrast sequence.

• Enhancing tumor: Indicates breakdown of the blood–
brain barrier. Seen in T1c post-contrast sequence.

• Non-enhancing tumor: Seen in regions not included
in edema, necrosis, or enhancing tumor.

There are many reasons why a person can have a brain
tumor-like growth of cells uncontrollably in the brain due to
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FIGURE 1 | (A) Two randomly selected images from the T1wCE
modality. (B) Intensities of the two images before normalization.
(C) Intensities of the two images after normalization. It is imperative
to note that certain types of tumors are best seen in different
modalities, like edema, which is best seen in T2-weighted sequences
and FLAIR images. Necrosis is best visible in the T1 post-contrast
sequence, and an enhancing tumor is best seen in the T1c post-
contrast sequence (13).

mutation or defect in a gene. This is a reason for causing a
brain tumor. Exposure to large amounts of X-rays is also an
environmental cause which leads to the development of brain
tumors. A tumor’s effects on your body are evaluated by its
size, location, and growth rate. General symptoms include
changes in the pattern of headaches, nausea or vomiting,
vision problems like blurred vision, tiredness, speech and
hearing difficulties, and memory problems. Early diagnosis
of a tumor provides the patient with the best chance of
successful treatment. There are fewer chances of survival, a
high cost of treatment, and many more problems arise if the
care is delayed.

Early diagnosis improves the outcomes of treatment.
Diagnosing a brain tumor generally begins with a magnetic
resonance imaging (MRI) scan. MRI is an imaging technique
that utilizes magnetic fields and radio waves to create
detailed images of the organs and tissues. MRI can be used
to measure the tumor’s size. For diagnosing a tumor, the
accuracy of conventional MRI is generally satisfactory, but
we should not rely heavily on it. One of the important
and efficient techniques for diagnosing tumors is brain
tumor segmentation. The technique of separating tumors
from other brain parts in an MRI scan of the brain is
called brain tumor segmentation. It separates tumors from
normal brain tissues. Tumor segmentation helps in correctly
identifying the spatial location of a tumor. Brain tumor
segmentation proves to be useful for diagnosis and treatment
planning. However, sometimes it is hard to segment the
tumor because of irregular boundaries in MRI scans. If
a tumor is detected on time due to segmentation, it will
prove to be very convenient from the doctor’s perspective to
commence treatment planning as soon as possible.

Our dataset consists of a neuroimaging informatics
technology initiative (NIFTI) file format. About 10 years
ago, the NIFTI file format was envisioned as a replacement
for the 7.5 file format for analysis. In image informatics
for neuroscience and even neuroradiology research, NIFTI
files are frequently employed. For our project, we used the
brain tumor segmentation (BraTS) dataset. The Radiological
Association of North America (RSNA), the American
Society of Neuroradiology (ASNR), and the Medical
Image Computing and Computer-Assisted Interventions
(MICCAI) society are working together to arrange the
BraTS challenge. The model used by us for segmentation
is “SegResNet,” and we have trained it on the BraTS 2021
(1–5) (Task 1) dataset. The following work contains a
detailed description of the dataset, proposed methodology,
comparative analysis, and results.

2. Theoretical background

2.1. Technology stack

We used the Kaggle notebooks for training, validation, and
testing our model. By default, Kaggle provides P100 GPUs
for all notebooks with 16 GB of RAM and 16 GB of storage
space. We used PyTorch version 1.10.0 and MONAI 0.7.0
for coding. We also used intensity normalization (6) version
2.1.1 for normalizing intensities.

2.2. Dataset

We used the BraTS 2021 task-1 dataset. The collection
includes segmentation masks, Native (T1), T1-weighted
(T1Gd), T2-weighted (T2), and T2-Fluid Attenuated
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FIGURE 2 | Augmented samples of different modalities. Each “image channel” corresponds to a different modality.

FIGURE 3 | Brain tumor segmentation masks.

FIGURE 4 | (A) Average loss (left) and average dice score (right) per epoch. (B) Dice score for tumor core (left), whole tumor (center), and
enhanced tumor (right).

Inversion Recovery (Recovery) NIFTI volumes for 1,251
individuals from various sources and in axial, sagittal,
and coronal orientation. All of the files were NIFTI
volumes containing 240 image slices. Each image was
240× 155 in size.

2.3. Literature survey

For the purpose of segmenting brain tumors, Havaei et al.
proposed a CNN architecture that not only utilized local and
global features concurrently. They obtained dice scores of

0.85 for segmenting the entire tumor, 0.78 for segmenting the
tumor core, and 0.73 for improving tumor segmentation (7).

Pereira et al. (8) explored a way to counter large spatial
and structural variability by incorporating small 3 × 3
kernels in their proposed architecture. They attained a dice
score of 0.88 on the whole tumor segmentation; for tumor
core segmentation, they were able to get a score of 0.83,
and for enhancing tumor, they got 0.77. Myronenko et al.
(9) described an encoder-decoder-like architecture and a
variational autoencoder branch. Their model yielded a dice
score of 0.81, 0.90, and 0.86 on enhancing tumor, whole
tumor, and tumor core segmentation.

https://doi.org/10.54646/bijiam.2022.10
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FIGURE 5 | The model’s output (top) is compared to the actual tumor
(bottom). The yellow region is the enhanced tumor, the yellow and
green regions constitute the tumor core, and the yellow, red, and
green regions constitute the whole tumor.

An anisotropic and dilated convolution filter-based
cascade of a fully convolutional neural network was proposed
by Wang et al. (10). They broke the issue down into a series of
binary categorization issues. On the entire tumor, tumor core,
and improving tumor segmentation, their model received
scores of 0.78, 0.87, and 0.77, respectively.

Mohammadreza et al. (11) extracted text-on-descriptor
features such as histograms and first-order intensities, which
were then fed into a Random Forest Classifier. They scored
0.84 on the whole tumor, 0.82 on the enhancing tumor, and
0.78 on the tumor core segmentation.

Lyu et al. (12) used a 2-stage model; for stage 1, they
used an encoder-decoder-like architecture and variation
autoencoder regularization. In stage 2, the network uses
attention gates and is trained on a dataset formed by stage
1 output. Their dice scores for the whole tumor, tumor core,
and enhancing tumor were 0.87, 0.83, and 0.82, respectively.

3. Methodology

Preprocessing: The dataset comes from various sources.
We used the intensity normalization technique described
by Shinohara et al. (6) over every image of every modality
(FLAIR, T1w, T1wCE, and T2w) to solve the difference in
intensities. Separate normalizers were used for each modality
and were trained on the images belonging to their respective
modalities. Since the images were in different orientations,
we oriented all of them in the RAS orientation.

Image Augmentations: We cropped the image, keeping
the region of interest of 224× 224× 144. We then randomly
flipped the images across all three axes and randomly scaled
and shifted the intensities. We used no augmentations for
validation or testing.

Loss Functions and Metric: We used the dice loss
function (14) and metric, a region-based loss function, to
calculate similarities. Mathematically, the dice coefficient can
be expressed as follows:

D =
2
∑N

i pigi∑N
i p2

i +
∑N

i g2
i

where D is the dice coefficient, p and g are pairs of
corresponding pixel values.(15) For training, we added a
small constant to the denominator to tackle the scenarios in
which the denominator becomes less than 0.

Hyperparameters: We initialized the model with 16 filters,
keeping the number of input channels equal to 4 and yielding
an output of 3 channels, corresponding to the three classes
discussed earlier. We also applied a dropout with a dropout
rate of 0.2. Due to memory constraints, we kept the batch
size to 1. We used the Adam optimizer for training with a
learning rate of 0.0001. We applied L2 regularization with
a regularization coefficient set to 0.00001 and trained the
model for 10 epochs.

Model Architecture: We used the SegResNet architecture
with the number of downsampling blocks in each layer being
1, 2, 2, and 4, respectively. The number of upsampling blocks
in each layer is 1, 1, and 1, respectively.

Training: We trained our model for 10 epochs and saved
the best-performing model. We modified the traditional

TABLE 1 | Comparison of dice scores obtained by different methods.

Researches Number of test images Dice scores

Havaei et al. (7) 200 2d slices and approximately 6,000 2D images WT = 0.85, TC = 0.78, ET = 0.73
Pereira et al. (8) The training set contains 20 HGG and 10 LGG. WT = 0.88, TC = 0.83, ET = 0.77
Myronenko et al. (9) Training dataset included 285 cases (210 HGG and 75 LGG). ET = 0.81, WT = 0.90, CT = 0.86
Wang et al. (10) The training set contains images from 285 patients (210 HGG and 75 LGG). WT = 0.7831, CT = 0.8739, ET = 0.7748
Soltaninejad et al. (11) The dataset was tested on 11 multimodal images and the BRATS 2013 clinical

dataset using 30 multimodal images.
WT = 0.80, TC = 0.89

Lyu et al. (12) The BraTS 2020 dataset containing 259 HGG and 110 LGG cases ET = 0.79, WT = 0.90, TC = 0.83
Proposed 1251 NIFTI volumes of 240 image slices each ET = 0.71, WT = 0.90, TC = 0.84



10.54646/bijiam.2022.10 69

training technique and used the mixed-precision (16)
training method, which enhances performance and
efficiency and reduces memory requirements. We used
automatic mixed precision for both the training and
validation tasks.

4. Result analysis

We converged our loss to 0.11 and got an average dice score
of 0.84 on the validation set. As for the separate classes, our
dice scores were as follows (on the validation set):

TC = 0.84
WT = 0.90
ET = 0.79
On the test set, we got a mean dice score of 0.86; in the TC

class, the dice score was 0.86; in the WT class, it was 0.92; and
finally, on ET, it was 0.81.

5. Discussion

Brain tumor segmentation proves to be an effective tool
for accurately diagnosing the tumor and its constituents.
Our model can segment a tumor from an MRI image
efficiently. The model was trained on 750 NIFTI volumes
and validated and tested on 250 NIFTI volumes. We
were able to get our loss down to 0.11 and got a mean
dice score of 0.84. We believe that more data could
significantly improve the model’s performance for future
research.

6. Conclusion

In this study, we used the SegResNet architecture to segment
the brain tumor. Our model produces great results on 200 test
cases. Our model’s best score produced a dice score of 0.86
on TC, 0.92 on WT, and 0.81 on ET. In contrast, the mean
dice score was 0.84.
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