
BOHR International Journal of Internet of things,
Artificial Intelligence and Machine Learning

2024, Vol. 3, No. 1, pp. 1–15
DOI: 10.54646/bijiam.2024.19

www.bohrpub.com

RESEARCH

Yoga Pose Recognition (YPR) using ML-DL and android
application

Partha Ghosh1*, Sitam Sardar1, Riya Mondal1, Ayush Jha1 and Aniruddha Sarkar1

1Department of Computer Science and Engineering Government College of Engineering and Ceramic Technology, Kolkata

*Correspondence:
Partha Ghosh,
parth_ghos@rediffmail.com

Received: 14 March 2024; Accepted: 05 September 2024; Published: 12 October 2024

The study aimed to create a Human Activity Recognition (HAR) model for Yoga Pose Recognition and Classification
using datasets gathered through smart sensor technologies and imaging and filming devices to read various human
actions, recognize various poses, analyze them, and then predict and classify the Yoga pose with minimum error.
Pre-recorded data was fed to the model for the initial run and thereafter the model would learn and re-learn
new inputs and outputs by supervised learning methods. A collection of data from cameras present in smart
smartphones and other devices were used to create a dynamic dataset of posture photos and videos to predict the
most feasible output and add the mapping in the dataset to recognize particular Yoga poses. Yoga is a methodical
way of attaining balance and harmony both inside oneself and outside the body. It has its roots in ancient India.
Its history spans millennia, with the word “yoga” being first used in the Rig Veda, an ancient Indian scripture,
which dates back to around 1500 BC. The Atharva Veda, which was written about 1200–1000 BC, places a strong
emphasis on breath regulation. Indus-Saraswati seals and fossils depicting yoga sadhana practitioners have also
been discovered. These artifacts date back to 2700 BC (10). Nowadays, yoga is performed by millions of people
worldwide. It provides mental and physical health advantages, such as lowering stress, anxiety, and depression, as
well as physical benefits like better flexibility, strength, and posture. Yoga has grown popular as more individuals
try to live healthier lives.
The study investigated various human postures and actions to predict the possible Yoga pose performed by that
particular human through ML/DL (Machine Learning and Deep Learning) approaches. The proposed system or
model that learned and evolved by obtaining new data and through supervised learning. We have used single-user
pose recognition to create personalized datasets. Our aim was to provide a self-instruction system that allows
people to learn and practice yoga correctly by themselves. This development laid the foundation for building
such a system by discussing various ML and DL approaches to accurately classify Yoga poses on pre-recorded
videos and photos.

Keywords: Human Activity Recognition (HAR), CNN, Transfer Learning, Yoga Pose Recognition

1. Introduction

1.1. Human Activity Recognition (HAR)

This wide-ranging topic of study uses machine learning and
deep learning to determine a person’s precise movement or
activity from sensor data. It has greatly influenced many
modern research avenues on humans, their surroundings,

and the interactions between them. It is being heavily relied
on in the modern healthcare sector for health informatics
and predictions.

There are three types of HAR:

(1) sensor-based single-user activity recognition.
(2) sensor-based multi-user activity recognition.
(3) sensor-based group activity recognition.

1

www.bohrpub.com
https://doi.org/10.54646/bijiam.2024.19
https://www.bohrpub.com
https://creativecommons.org/licenses/by/4.0/


2 Ghosh et al.

2. Objective:

In our work, we focused on sensor-based single-user pose
recognition. As smartphones, handheld devices, and other
wearable devices have become more common nowadays, the
focus of HAR dataset collection has shifted to the sensors
present in these devices.

Pose recognition was accomplished in our project
using both probabilistic and logical reasoning. Logic-based
methods record all reasonable and coherent explanations
for the observed behaviors. Thus, every consistent and
conceivable result needs to be taken into account. More
recently, activity recognition has used statistical learning
models and probability theory to reason about activities and
probable consequences under ambiguity.

2.1. Human pose recognition and
estimation

We focused on Human Pose Recognition and Estimation as
the only HAR component. One of the more difficult problems
in computer vision is human pose estimation. In order to
create a skeletal representation, it deals with the localization
of human joints in an image or video. It is challenging to
automatically identify a person’s stance in an image since it
depends on a variety of factors, including the image’s quality
and scale, lighting, background clutter, clothes, surrounds,
and how people interact with their environment.

An application of pose estimation that has attracted many
researchers in this field is exercise and fitness. One form of
exercise with intricate postures is Yoga, which is an age-old
exercise that started in India but is now famous worldwide
because of its many physical, mental, and spiritual benefits.

2.2. About yoga

But the thing with yoga is that, like any other kind of
exercise, it requires proper technique; otherwise, a yoga
session may be counterproductive and even harmful. This
means that a teacher is required to oversee the session and
adjust the student’s posture. An artificial intelligence-based
program may be used to recognize yoga postures and offer
individualized feedback to assist people improve their form,
as not all users have access to an instructor.

2.3 Our focus

This work focused on exploring the different approaches
for Yoga pose classification and sought to attain insight
into the following: What is pose estimation? What is deep
learning? How can deep learning be applied to Yoga pose
classification in real time? This project used references

TABLE 1 | Comparing the accuracy of different models on the public
dataset.

Deep learning models Accuracy rate (%)

LSTM 90.47
CNN 91.53
S-LSTM 95.81
LSTM 85.83
BLSTM 84.54
CNN 85.40
BLSTM 95.70
DBLSTM 96.75
HDL 97.95

TABLE 2 | The SLR, HAR, and SHAR datasets’ respective results.

Experiment Window size IMU-CNN
accuracy (%)

IMU-transformer
accuracy

SLR 50 96.4 97.3
HAR 50 86.3 89.7
SHAR 50 83.4 85.2
Overall 50 88.6 90.6

from conference proceedings, published papers, technical
reports, and journals.

3. Literature review

To convert smartphone readings into different kinds of
physical activity, Marcin Straczkiewicz et al. (1) have
presented a number of Human Activity Recognition (HAR)
systems. They took out data on the sensors, body position of
smartphones, kinds of physical activity that were researched,
data processing methods, and classification systems applied
to activity detection. Transitioning from data gathering
to data analysis is the primary problem in this discipline.
The methods utilized for feature extraction, activity
categorization, data preprocessing, and data gathering were
the main subjects of their investigation. They spoke on
methods’ generalizability and repeatability, or their capacity
to apply key components to broad and varied research
participant groups. Finally, the obstacles that must be
overcome to hasten the broader use of smartphone-based
HAR in public health studies.

Users can obtain publicly accessible datasets as detailed in
a section by Binh Nguyen et al. (2). A framework covering
the state-of-the-art research and new directions in HAR
applications is proposed. This research aimed to examine
the current state of the art for HAR power usage and
categorization. HAR’s power needs are discussed in detail. To
the best of the authors’ knowledge, this is the first review
article discussing power use in HAR. Table 1 shows the



10.54646/bijiam.2024.19 3

FIGURE 1 | Workflow Diagram.

FIGURE 2 | Workflow Diagram.

Accuracy Comparison of several models using the publicly
available dataset.

According to Shavit et al. (3), large short-term memory
architectures or convolutional neural networks are used in
the learning-based techniques currently used for activity
recognition from inertial data. For sequence analysis
tasks, transformers have recently been demonstrated to
perform better than these structures. This study offers
an enhanced and comprehensive framework for learning
activity identification tasks: an activity recognition model
based on Transformers. Across all investigated datasets and
situations, the suggested method obtains consistently higher
accuracy and improved generalization. The framework
described above may be implemented in a codebase that can
be found at (4). Relying on one or more of these sensors,
HAR finds use in a wide range of applications, such as indoor
navigation, gesture recognition, healthcare, and surveillance.

TABLE 3 | Confusion matrix of Asana recognition.

Ground truth Recognition

Tree Warrior Dog

Tree 24 0 0
Warrior 1 25 0
Dog 0 0 25

*Warrior III and Downward-facing dog are abbreviated as Warrior and Dog.

TABLE 4 | 2x2 Confusion matrix.

Predicted values Actual values

Positive (1) Negative (0)

Positive (1) TP FP
Negative (0) FN TN

The results obtained for the datasets SHAR, HAR, and SLR
are presented in Table 2.

A lot of work has been done in the past in building
systems that are automated or semiautomated which help
to analyze exercise and sports activities such as swimming,
basketball, etc.

S. Patil et al. (5) proposed a system for identifying Yoga
posture differences between an expert and a practitioner
using Speeded Up Robust Features (SURF), which uses
information of image contours. However, describing
and comparing the postures almost by using only the
contour information is notsufficient. Figure 1 illustrates the
Workflow Diagram.

W. Wu et al. (6) have devised a system that uses tactors
and inertial measurement units (IMUs) for yoga training.
However, this may cause the user discomfort and interfere
with the natural yoga stance.

E. Trejo et al. (7) presented a system for Yoga pose
detection for six poses using Adaboost classifier and Kinect
sensors and achieved an accuracy of 94.8%. However,
they used a depth sensor-based camera that may not
be always accessible to users. Figure 2 demonstrates the
Workflow Diagram.

Another system for Yoga poses correction using Kinect
has been presented by H. Chen et al. (8) which takes into
account three Yoga poses, warrior III, downward dog, and
tree pose. However, their results are not very impressive,
and their accuracy score is only 82.84%. The traditional
method of skeletonization has now been replaced by deep
learning-based methods. Table 3 shows Confusion Matrix of
Asana recognition.

https://doi.org/10.54646/bijiam.2024.19


4 Ghosh et al.

FIGURE 3 | Workflow Diagram of DenseNet201.

4. Motivation and problem
formulation

Deep Learning is a promising domain where a lot of research
is being done, enabling us to analyze tremendous data in
a scalable manner. As compared to traditional Machine
Learning models where feature extraction and engineering is
a must, Deep Learning eliminates the necessity to do so by
understanding complex patterns in the data and extracting
features on its own.

4.1. About deep learning

When a model receives picture input and produces a
prediction, deep learning is frequently employed for image
classification tasks. In order to ascertain the relationship
between the input and output, Deep Learning algorithms
employ Neural Networks. In Pose Estimation tasks, an image
including the individual’s pose is used as input, and a Deep
Learning model is trained to properly identify the various
stances in order to categorize the images with accuracy. This
could be a computationally expensive task if the number
of images is large. Also, as we want accurate results, we
would not want to compromise on the quality of the
images as that could affect the features extracted by the
model. Below are some basic deep learning models used for
classification problems.

4.1.1. Multilayer Perceptron (MLP)

One input and one output layer make up the MLP, a
traditional neural network. Known as hidden layers, these
are the layers that lie between the input and output layers.
There can be one or more hidden layers. MLPs form a
fully connected network as every node in one layer has a

connection to every node in another layer. A fully connected
network is a foundation for Deep Learning. MLP is popular
for supervised classification where the input data is assigned
a label or class.

4.1.2. Recurrent Neural Network (RNN)

Neural Network Architectures, or RNNs, are employed
in sequence prediction applications. One to many, many
to one, and many to many are possible scenarios in
sequence prediction. RNNs handle sequential data better
since they retain a neuron’s past information. RNNs are most
commonly used for Natural Language Processing (NLP)
problems where the input is naturally modeled in sequences.

In activity recognition or pose classification tasks too, there
is a dependency between the previously performed action
and the next action. In case of yoga as well, the context or
information of initial or intermediary poses is important in
predicting the final pose. Yoga can thus be thought of as a
sequence of poses. This makes RNNs a suitable choice for
Yoga pose recognition and classification.

4.1.3. Convolutional Neural Network (CNN)

Convolutional Neural Network is a type of Neural Network
widely used in the computer vision domain. It has proved to
be highly effective such that it has become the go-to method
for most image data. CNNs consist of a minimum of one
convolutional layer which is the first layer and is responsible
for feature extraction from the images. The convolutional
layer, through the use of convolutional filters, generates what
is called a feature map. With the help of a pooling layer, the
dimensionality is reduced, which reduces the training time
and prevents overfitting. CNNs show a great promise in pose
classification tasks, making them a highly desirable choice.



10.54646/bijiam.2024.19 5

FIGURE 4 | Workflow Diagram of ResNet50.

FIGURE 5 | Workflow Diagram of VGG16.

4.2. Problem formulation

As we can see, there is yet to be a robust methodology to
identify and classify Yoga poses (Human poses in general)
with minimum error, time, and computational power.
We are hoping to use Deep Learning Algorithms to try
and fill that gap.

4.3. Proposed solution

Through ML/DL approaches, the study of various human
postures and actions is being conducted to predict the
possible Yoga pose. Through ML/DL approaches, the
new data obtained and the supervised learning continued
to cause the system or model learn and evolve. We
had used using single-user pose recognition to create

personalized datasets. Our aim is to provide a self-
instruction system that allows people to learn and
practice yoga correctly by themselves. This project
lays the foundation for building such a system by
discussing various Machine Learning and Deep Learning
approaches to accurately classify Yoga poses on prerecorded
videos and images.

5. Evaluation metrics

5.1. Classification score

Classification score refers to what we usually mean by
accuracy of the model. It can be described as the proportion
of number of predictions that were correct to the total input
samples. In case of multiclass classification, this metric gives
good results when the number of samples in each class is

https://doi.org/10.54646/bijiam.2024.19


6 Ghosh et al.

FIGURE 6 | Workflow of VGG16 model.

almost the same.

Accuracy =
Number of Correct predictions

Total number of predictions made

5.2. Confusion matrix

Confusion matrix represents a matrix that explains
the accuracy of the model completely. There are four
important terms when it comes to measuring the
performance of a model.

• True Positive: Predicted value & the actual
output are both 1.

• True Negative: Predicted value & the actual
output are both 0.

• False Positive: Predicted value is 1 but the
actual output is 0.

FIGURE 7 | Workflow Diagram of VGG19.

• False Negative: Predicted value is 0 but the
actual output is 1.

Table 4 shows a basic confusion matrix for binary
classification. The diagonal values represent the samples that
are correctly classified and thus, we always want the diagonal
of the matrix to contain the maximum value. In case of a
multiclass classification, each class represents one row and
column of the matrix.

5.3. Model accuracy and model loss
curves

These curves are also referred to as learning curves and
are mostly used for models that learn incrementally over
time, for example, Neural Networks. They represent the
evaluation on the training and validation data which gives us
an idea of how well the model is learning and how well is it
generalizing. The model loss curve represents a minimizing
score (loss), which means that a lower score results in better
model performance. The model accuracy curve represents
a maximizing score (accuracy), which means that a higher
score denotes better performance of the model. A good fitting
model loss curve is one in which the training and validation
loss decrease and reach a point of stability and have a minimal
gap between the final loss values. On the other hand, a good
fitting model accuracy curve is one in which the training and
validation accuracy increase and become stable and there is a
minimum gap between the final accuracy values.

6. Methodology

Proposed Models.

6.1. DenseNet201

Overview
Through a feed-forward connection, DenseNet links each

layer to every other layer. They significantly lower the



10.54646/bijiam.2024.19 7

FIGURE 8 | Workflow of VGG19 model.

FIGURE 9 | Total params and trainable params.

https://doi.org/10.54646/bijiam.2024.19


8 Ghosh et al.

FIGURE 10 | Accuracy.

FIGURE 11 | Confusion Matrix: 1. Down dog 2. Goddess 3. Plank 4. Tree 5. Warrior II.

TABLE 5 | Result Chart.

Class n(truth) n(classified) Accuracy Precision Recall F1 score

1 80 80 97.18% 0.94 0.94 0.94
2 75 76 96.89% 0.92 0.93 0.93
3 66 63 97.46% 0.95 0.91 0.93
4 61 60 96.89% 0.92 0.90 0.91
5 72 75 95.20% 0.87 0.90 0.88

number of parameters, improve feature propagation, resolve
the vanishing-gradient issue, and promote feature reuse. The
concept behind DenseNet is that convolutional networks
with fewer connections between input and output layers
may be trained to be significantly deeper, more accurate,
and more efficient.

201 layers deep CNN is called DenseNet-201. DenseNet is
a reasonably tiny and low power consumption model, which
is why we chose it.

Results
Training Accuracy: 0.8066
Validation Loss: 2.1614
Validation Accuracy: 0.5377
Workflow Diagram
Figure 3 illustrates Workflow Diagram of

DenseNet 201.

6.2. ResNet50

Overview
When we add more layers to our deep neural networks,

the performance becomes stagnant or starts to degrade.
This happens due to the vanishing gradient problem.
When gradients are back propagated through the
deep neural network and repeatedly multiplied, this
makes gradients extremely small causing the vanishing
gradient problem. ResNet solves the vanishing gradient
problem by using Identity shortcut connection or skip

connections that skip one or more layers. Shortcut
connections are connecting output on layer N to the
input of layer N+Z.

ResNet-50 is a 50 layers deep CNN. It has 48 Convolution
layers along with 1 MaxPool and 1 Average Pool layer. It has
3.8 x 10ˆ9 Floating points operations. It is a type of Artificial
Neural Network (ANN) that forms networks by stacking
residual blocks.

Results
Training Accuracy: 0.7555
Validation Loss: 1.6325
Validation Accuracy: 0.5590
Workflow Diagram
Figure 4 shows Workflow Diagram of ResNet50.

6.3. VGG16

Overview
There are 16 layers in the convolutional neural

network VGG-16. It is thought to be among the
greatest computer vision models available today. It
mostly concentrates on using the maxpool layer of
a 2x2 filter with stride 2 and identical padding for
convolution layers of a 3x3 filter with stride 1. Over
the complete design, it maintains this configuration of
convolution and max pool layers. The final component
is a softmax output, which is followed by two FCs
(completely connected layers). 16 layers with weights is
what the 16 in VGG16 stands for. Approximately 138
million (approximately) trainable parameters make up
this huge network.

Results
Training Accuracy: 0.9545
Validation Loss: 0.9325
Validation Accuracy: 0.9245
Workflow Diagram
Figure 5 shows Workflow Diagram of VGG16
Figure 6 illustrates Workflow of VGG16 model.



10.54646/bijiam.2024.19 9

FIGURE 12 | Training Accuracy vs. Validation Accuracy and Training Loss vs. Validation Loss.

FIGURE 13 | Workflow Diagram of K-fold Cross Validation.

FIGURE 14 | Confusion Matrix.

6.4. VGG19

Overview
A convolutional neural network with 19 layers is called

VGG-19. There are sixteen convolution layers, five MaxPool

layers, three fully linked layers, and one SoftMax layer. It
makes use of (3x3) kernels with a 1-pixel stride size. 19.6
billion FLOPs are in VGG19.

To maintain the image’s spatial resolution, spatial padding
was applied. Using stride 2, max pooling is carried out over
a 2x2 pixel frame. The Rectified Linear Unit (ReLu), which
introduces non-linearity to improve the model’s classification
and computing efficiency, comes next. Previous models relied
on sigmoid or tanh functions.

One big advantage of VGG19 is that the weights are easily
available with other frameworks like keras so they can be
tinkered with and used for as one wants.

Workflow Diagram
Figure 7 describes Workflow Diagram of VGG19.
Figure 8 exemplifies Workflow of VGG19 model.
Results
Training Accuracy: 0.9896
Validation Loss: 0.0210
Validation Accuracy: 0.9891
Figure 9 shows total params and trainable params.
Figure 10 demonstrates Accuracy.

https://doi.org/10.54646/bijiam.2024.19


10 Ghosh et al.

FIGURE 15 | Training Accuracy vs. Validation Accuracy vs. Training Loss vs. Validation Loss.

FIGURE 16 | Workflow Diagram of Transfer Learning.

FIGURE 17 | Total params and trainable params.

Figure 11 explains Confusion Matrix: for 1. Down dog 2.
Goddess 3. Plank 4. Tree 5. Warrior II and Table 5 shows
the Result Chart.

Figure 12 shows Training Accuracy vs. Validation
Accuracy & Training Loss vs. Validation Loss.

6.5. CNN (K-fold Cross Validation)

Overview
A resampling technique called cross-validation is used to

assess machine learning models on a small sample of data.

The process takes a single parameter, k, which is the number
of groups into which a given data sample should be divided.
As such, k-fold cross-validation is a common name for the
process. When a particular number for k is selected, it may be
substituted for k in the model’s reference; for example, k = 10
would become 10-fold cross-validation.

In applied machine learning, cross-validation is mostly
used to assess a model’s proficiency on hypothetical
data. That is, to assess the model’s projected overall
performance using a small sample in order to make
predictions on data that were not utilized during the
training of the model.



10.54646/bijiam.2024.19 11

FIGURE 18 | Confusion Matrix.

TABLE 6 | Result chart.

Class Accuracy Precision Recall F1 score

1 98.60% 0.95 0.95 0.98
2 97.18% 0.93 0.94 0.97
3 97.92% 0.96 0.92 0.96
4 97.45% 0.94 0.90 0.97
5 96.30% 0.89 0.91 0.90

The general procedure is as follows:

(1) Randomly arrange the dataset.
(2) Divide the collection into k groups.
(3) For every distinct group:

a. Use the group as a test or holdout set of data.
b. Create a training data set from the

remaining groups.

c. Use the training set to fit a model, then assess it
using the test set.

d. Save the assessment result and
throw away the model.

4. Compile the model’s skill set using a sample of model
evaluation results.

Workflow Diagram
Figure 13 illustrates Workflow Diagram of K-fold

Cross Validation.
Results
Training Accuracy: 0.9675
Validation Loss: 0.1210
Validation Accuracy: 0.8620
Figure 14 shows Confusion Matrix.
Figure 15 shows Training Accuracy vs. Validation

Accuracy vs. Training Loss vs. Validation Loss.

6.6. CNN (Transfer Learning)

Overview
Using Transfer Learning, a Convolutional Neural Network

technique, a model created for one task is applied to another
as the foundation for a new model.

Given the enormous computation and time resources
required to develop neural network models on these
problems, as well as the significant skill jumps, they provide
on related problems, pre-trained models are frequently used
as the starting point on computer vision and natural language
processing tasks in deep learning.

Transfer learning involves training a base network on a
base dataset and task first, then repurposing the acquired
features to train a second target network on a target
dataset and task. When characteristics are general—that
is, appropriate for both base and target tasks—rather

FIGURE 19 | Training Accuracy vs. Validation Accuracy vs. Training Loss vs. Validation Loss.

https://doi.org/10.54646/bijiam.2024.19


12 Ghosh et al.

than particular to the base task, this procedure is more
likely to succeed.

Workflow Diagram
Figure 16 demonstrates Workflow Diagram of Transfer

Learning
Results
Training Accuracy: 0.9749
Validation Loss: 0.0907
Validation Accuracy: 0.9745
F1 Score: 0.974531880367235
Figure 17 shows total params and trainable params
Figure 18 depicts Confusion Matrix.
Table 6 describes the Result Chart.
Figure 19 shows Training Accuracy vs. Validation

Accuracy vs. Training Loss vs. Validation Loss.

7. Dataset

The Dataset used in the project is taken from Kaggle
(9) and is publicly available. It consists of images of 5
Yoga poses namely−Downdog (Adho Mukha Svanasana),
Goddess (UtkataKonasana), Plank (Phalakasana), Tree
(Vrikshsasana), and Warrior II (Virbhadrasana II).

The total number of images is 1081. All the images have
been taken in an indoor and an outdoor environment.
Table 7 describes the Dataset.

8. Results or finding

Human Activity Recognition has been studied extensively in
the past years and resulted in the advancement of Machine
Learning and Deep Learning methodologies as well as giving
rise to new techniques. Further development has been seen
in the particular aspect we worked on, i.e., Human Pose
Recognition and Estimation to assist in prevention of injuries
in sports and exercises and improves performance.

Our Yoga Pose Recognition and Classification system,
which will lead to a Yoga self-instruction system, carries the
potential to make Yoga more accessible and approachable,
making it popular and making sure it is performed in
the right manner.

Deep Learning methods are promising because of the
vast research being done in this field. The use of the CNN
models on the given dataset is seen to be highly effective and
classifies all the 5 yoga poses perfectly. Table 8 illustrates the
Comparative study.

9. Discussions

According to Table 8 one of the highest accuracies is shown
by the Transfer Learning model with the least validation

TABLE 7 | Dataset.

Sl. No. Yoga pose Regional name No. of images

01 Downdog Adho Mukha Svanasana 223
02 Goddess UtkataKonasana 180
03 Plank Phalakasana 266
04 Tree Vrikshsasana 160
05 Warrior II Virbhadrasana II 252
Total Yoga Pose Images 1081

TABLE 8 | Comparative study.

Sl. No. Model Training
Accuracy

Validation
Loss

Validation
Accuracy

1 DenseNet201 0.8066 2.1614 0.5377
2 ResNet50 0.7555 1.6325 0.5590
3 VGG16 0.9545 0.9325 0.9245
4 VGG19 0.9896 0.0210 0.9891
6 CNN (K-Fold Cross

Validation)
0.9675 0.1210 0.8620

5 CNN (Transfer
Learning)

0.9749 0.0907 0.9745

loss. Also, we see from Table 6 that this model has the best
consistent Accuracy, Precision, Recall and F1-score for all of
the observed Yoga poses though the later ones have a minor
drop in the values.

From Figure 21 we can show that our model reflects
a quick rise in both training and validation accuracy that
stabilizes early at a certain max value. Unlike VGG19, there
is no further dip in the value and is consistent throughout.
Inversely, we can show that our model has a quick fall in
training and validation loss that gradually stabilizes at a
certain min value. It is a bit unstable but stabilizes eventually.
Transfer Learning is a bit less accurate than VGG19 but it
reaches stability faster and gives better Precision, Recall, and
F1-score. It also produces a better Confusion Matrix than the
previous, as shown in Figure 20. So, it can be trained faster
and with a smaller optimized dataset with greater accuracy.

Thus, we conclude that Transfer Learning is the best model
for Yoga Pose Recognition and Classification with minimum
error we want to achieve.

10. Results

Android Implementation
Android is a mobile operating system based on a modified

version of the Linux Kernel and other open-source software,
designed primarily for touchscreen mobiles.

Why have we chosen android?
Now a days android smart phones are the most popular

across the globe. Almost everyone has a smart phone.



10.54646/bijiam.2024.19 13

FIGURE 20 | Workflow Diagram of Android Application.

FIGURE 21 | The QR code.

Therefore, through our app, Yoga Trainer, we can deliver
our product to a huge audience and also as the android
is an open-source platform, it’s easy to access and work
with camera and sensors. There isn’t any restriction in
android during development. It gives more freedom, control,
and customization.

Till now our implementation

• At the opening of our main screen (MainActivity()
? CameraFragment()) we are opening camera to take
real-time video shots. To do so we are using CameraX
Library, which is a Jetpack library, built to help make
camera app development easier.

FIGURE 22 | Plank pose.

• Using CameraX whatever image frames we are getting
in real time we are converting them into a required
Bitmap, which is simply a rectangle of pixels.

https://doi.org/10.54646/bijiam.2024.19


14 Ghosh et al.

FIGURE 23 | Tree pose.

FIGURE 24 | Warrior pose.

• Now we are analyzing each image in real time via our
trained tflite model with the help of image analyzer of
cameraX and tflite android support.

FIGURE 25 | Downdog pose.

• Then according to the analyzed data our
result is shown. If any poses are matching,
the name of the pose and accuracy are
displayed.

Workflow Diagram
Figure 20 shows Workflow Diagram of

Android Application.
QR Code to download the app
Figure 21 illustrates The QR Code
Download Link: https://yogatrainer-finalyearproject.

github.io/
Working (Shown through four images)
Figures 22–25 show detection of different yoga poses.
Technology Used
Framework

• Android

Language

• Kotlin
• XML
• Python

https://yogatrainer-finalyearproject.github.io/
https://yogatrainer-finalyearproject.github.io/


10.54646/bijiam.2024.19 15

Tools

• TFLite
• Figma
• Android Studio

11. Conclusion

The work aimed to develop a self-instruction system for
practicing yoga by individuals using machine learning
and deep learning approaches. It uses single-user pose
recognition to create personalized datasets, allowing users
to learn and practice yoga independently. The system
evolved through new data and supervised learning.
The project discusses various ML and DL approaches
for accurately classifying yoga poses from pre-recorded
videos and photos.

The proposed model currently classifies only 5 Yoga
asanas. There are a number of Yoga asanas, and hence
creating a pose recognition and classification model that can
be successful for all the asanas is a challenging problem.
The dataset can be expanded my adding more Yoga poses
performed by individuals not only in indoor settings but also
in outdoor settings. A portable device for self-training and
real-time predictions can be implemented for this system.
This work demonstrates Human Activity Recognition for
practical applications.

We will also like to extend the idea to build a full-fledged
Yoga Tutorial and Guidance system in real time at home
with step-by-step tutorials and will also provide posture
error detection, posture correction guidance, and other
healthcare-related services like personalized Yoga regime,
online real-time guidance, personalized diet charts, etc.
through a dedicated app.

Author contributions

PG, SS, and AJ conceived of the presented idea. PG, SS, and
AJ developed the theory and performed the computations.
AJ and SS verified the analytical methods. PG, RM, and AS
encouraged us to investigate and supervised the findings of
this work. All authors discussed the results and contributed
to the final manuscript.

References

1. Straczkiewicz M, Peter J, Jukka-Pekka O. A systematic review of
smartphone-based human activity recognition methods for health
research. NPJ Digit Med. (2021) 4:1–15.

2. Nguyen B, Yves C, Teodiano B, Sridhar K. Trends in human activity
recognition with focus on machine learning and power requirements.
Mach Learn Applic. (2021) 5:100072.

3. Shavit Y, Itzik K. Boosting inertial-based human activity recognition with
transformers. IEEE Access. (2021) 9:53540–7.

4. GitHub, Inc. yolish/har-with-imu-transformer. (2023). Available online at:
https://github.com/yolish/har-with-imu-transformer

5. Patil S, Amey P, Aditya P, Aamir NA, Arundhati N. Yoga tutor
visualization and analysis using SURF algorithm. 2011 IEEE control and
system graduate research colloquium. IEEE (2011).

6. Wu W, Yin W, Guo F. Learning and self-instruction expert system
for Yoga. 2010 2nd international workshop on intelligent systems and
applications. IEEE (2010).

7. Trejo EW, Yuan P. Recognition of Yoga poses through an
interactive system with Kinect device. 2018 2nd International
Conference on Robotics and Automation Sciences (ICRAS). IEEE
(2018).

8. Chen H, He Y, Chou C, Lee S, Lin BP, Yu J. Computer-assisted self-
training system for sports exercise using kinects. 2013 IEEE International
Conference on Multimedia and Expo Workshops (ICMEW). IEEE (2013).

9. Kaggle. Yoga Poses Dataset. (2023). Available online at: https://www.
kaggle.com/datasets/niharika41298/yoga-poses-dataset

10. Jayasuriya, Kasun S. (2012) Discuss evidence of the Yoga practices in the
Pre-Vedic Indus-Saraswati Valley.

https://doi.org/10.54646/bijiam.2024.19
https://github.com/yolish/har-with-imu-transformer
https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset
https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset

	Yoga Pose Recognition (YPR) using ML-DL and android application
	1. Introduction
	1.1. Human Activity Recognition (HAR)

	2. Objective:
	2.1. Human pose recognition and estimation
	2.2. About yoga
	2.3 Our focus

	3. Literature review
	4. Motivation and problem formulation
	4.1. About deep learning
	4.1.1. Multilayer Perceptron (MLP)
	4.1.2. Recurrent Neural Network (RNN)
	4.1.3. Convolutional Neural Network (CNN)

	4.2. Problem formulation
	4.3. Proposed solution

	5. Evaluation metrics
	5.1. Classification score
	5.2. Confusion matrix
	5.3. Model accuracy and model loss curves

	6. Methodology
	6.1. DenseNet201
	6.2. ResNet50
	6.3. VGG16
	6.4. VGG19
	6.5. CNN (K-fold Cross Validation)
	6.6. CNN (Transfer Learning)

	7. Dataset
	8. Results or finding
	9. Discussions
	10. Results
	11. Conclusion
	Author contributions
	References


