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Facility location is an important problem faced by companies in many industries. Finding an optimal location for
facilities and determining their size involves the consideration of many factors, including proximity to customers
and suppliers, availability of skilled employees and support services, and cost-related factors, for example,
construction or leasing costs, utility costs, taxes, availability of support services, and others. The demand of the
surrounding region plays an important role in location decisions. A high population density may not necessarily
cause a proportional demand for products or services. The demography of a region could dictate the demand
for products, and this, in turn, affects a facility’s size and location. The location of a company’s competitors also
affects the location of that company’s facilities. Another important aspect in facility location modeling is that many
models focus on current demand and do not adequately consider future demand. However, while making location
decisions in an industry in decline, carefully and accurately considering future demand is especially important,
and the question in focus is whether to shrink or close down certain facilities with the objective of keeping a
certain market share or maximizing profit, especially in a competitive environment. This paper develops a model
which enables companies to select sites for their businesses according to their strategy. The model analyzes the
strategic position of the company and forms a guideline for the decision. It investigates which facilities should be
closed, (re)opened, shrunk, or expanded. If facilities are to shrink or expand, the model also determines their new
capacities. It depicts the impact on market share and accounts for the costs of closure and reopening. A number
of papers deal with location theory and its applications, but few have been written for modeling a competitive
environment in the case of declining demand. Existing papers in this area of research are mostly static in nature,
do not offer multi-period approaches, nor do they incorporate the behavior of competitors in the market. To
demonstrate the validity of the model, it is first solved using a small problem set–three facilities, three demand
locations, and three periods–in LINGO solver. To get a better understanding of the model’s behavior, several
additional scenarios were constructed. First, the number of demand locations was extended to 10. Our findings
show that the model presented provides an extension of existing facility location models that can be applied to
a variety of location problems in commercial and industry sectors that need to make their decisions considering
future periods and competitors. The developed heuristic shows multiple options for solving the problem, including
their advantages and disadvantages, respectively. The Java code and LINGO fragments thus developed can be
used to provide easy access to related problems.
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Introduction

Location deal with the allocation of resources in
space. There are a number of heuristic solutions
organizations can adopt to solve facility location
complexities. However, the literature on facility problems
is extensive, with a variety of solutions to facility
problems. According to Brandeau and Chiu (1), the
general location paradigm deals with one or more
facilities, called servers, serving a set of customers
that are distributed in a specific manner in a region.
Location decisions are critical and strategic and must be
made thoroughly because, very often, they require high
investments (2).

Facility location is an important underlining problem
faced by companies across a wide spectrum of industries.
Finding an optimal location for facilities and determining
their size involves the consideration of many factors,
including proximity to customers and suppliers,
availability of skilled employees and support services,
and cost-related factors, for example, construction or
leasing costs, utility costs, taxes, availability of support
services, and others.

In addition, the demand for the catchment area plays
an important role in location decisions. A high population
density may not necessarily cause a proportional demand
for products, or services. The demography of a region
could dictate the demand for products and this, in turn,
affects a facility’s size and location. Furthermore, the
decision to locate a facility is also influenced by the
level of competition within the region since rival players
will attempt to locate where there is potential for both
profit and market share maximization. Thus, optimal
location requires the firm to identify multiple parameters,
such as good network connectivity to roads and railway
systems, an efficient air transport system, and an overall
functional infrastructure.

The location of a company’s competitors also
affects the location of that company’s facilities. Just
because a competitor has a facility in a particular
location does not necessarily mean the company
must also locate its facilities there. Local restrictions,
such as laws, subsidies, and taxes play an important
role in a facility location decision. Infrastructural
aspects also play a role in the location decision.
A facility that has good connections to highways, air
transportation, and railroads is more attractive to those with
infrastructural bottlenecks.

Developed countries may not necessarily have higher
demand for products compared to emerging markets. In
fact, the opposite could be true. Massive declines in sales
have had a deep impact on the economic survival of
traditional industries in the last two decades, both in
the United States and Europe. In some industries, the
focus has now shifted toward the closure of facilities

because markets are saturated and new business models
have caused changes in business practices. How long to
operate a facility in a market that is declining is thus a
strategic question. Reports on the closures of drugstores or
building centers are part of the daily news in Germany.
Furthermore, the growth of e-commerce has changed
businesses completely and will dominate the development of
business process automation.

Demographic changes, such as declining populations and
increased immigration, are causing significant changes in
markets and demand, as well as the product mix that
companies must offer.

Location decisions are sometimes made based on
political considerations rather than careful, rational,
and systematic analysis. Another important aspect in
facility location modeling is that many models focus on
current demand and do not adequately consider future
demand. However, while making location decisions
in an industry in decline, carefully and accurately
considering future demand is especially important,
and the question in focus is whether to shrink or
close down certain facilities with the objective of
keeping a certain market share or maximizing profit,
especially in a competitive environment. There is a
strategic imperative in such decisions whereby an
organization may capture cost savings as a result of
closing or shrinking facility locations as well as the
critical role in the strategic design of supply chain
networks (3). This is because location decisions are
pivotal for a firm’s strategic planning because they
will have spill-over effects on logistics, customers, and
operational activities.

In their work, Correia and Melo (4) introduced an
extension of the classical multi-period facility location
problem by taking into account different customer segments
with distinct sensitivity to delivery lead times. Due
to the spatial distribution of customers, decisions are
conducted on the basis of discrete facility location models
that determine the number, location, and capacity of
where facilities should be. The changing market dynamics
and business conditions, together with increased cost
pressure associated with property acquisition and increased
service requirements, compel the firm to restructure its
network facilities. This could be associated with the firm
aiming to leverage its operational efficiency by taking
strategic actions aimed at maintaining a competitive
edge through supply chain reconfiguration (5). Such
dynamic supply chain reconfiguration will allow the firm to
establish the optimal location and capacity for each of the
facilities and use effective links to support transportation
networks and effective planning of material flow. This
dynamic approach raises key questions about whether to
open new geographic facilities, expand the existing ones,
contraction of capacities or even complete closure of
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facilities, in particular those facilities that exhibit poor
performance over time.

Literature review

The topic of facility location has and continues to attract
a plethora of research interests and attention in discrete
and continuous optimization due to its strategic importance
to a firm’s survival. Das et al. (6) argue that the primary
goal is to optimize at least one economic criterion
(e.g., transportation cost, transportation time, revenue,
good service, customer coverage, and market share). The
facility location literature has used multiple algorithms
and models to elucidate what has become a strategic
decision for firms.

Others, like Jakubovskis (7), examine a robust
optimization (RO) modeling technique that reveals some
insights on how firms can strategically conduct capacity
planning, confront technology choice problems and facility
location challenges. The findings reveal how firms can be
able to capture both economies of scale and scope under
certain demand realizations.

Location optimization has been studied since the
beginning of the 19th century. The early studies focused
on a more economic level in the theory of land usage
see (8) or in the theory of central locations (9). Location
theory on a business level was formally introduced by
Weber (10), and Isard (11) extended Weber’s work.
Others also started working on location problems by
considering the problem of locating two competing
vendors along a straight line, e.g., Hotelling (12).
A number of different researchers have studied the
location problem from multiple perspectives and have
published various papers (13), (14), (15), (16), (17),
(18), (19), (20), (21), (22), (23), (24), (12), (25), (26),
(27), (10).

Location models

Papers on location theory have been classified by Francis
et al. (28). They distinguish between four classes of
problems: continuous planar, discrete planar, mixed planar,
and discrete network problems. However, the major planar
location problems rely on the assumptions that “demand
of customers is represented by a finite set of discrete
points and the placement of facilities on the plane” (29).
For this reason, it is extremely difficult and impractical to
represent every customer site as a separate demand point.
Therefore, decision makers have to aggregate customers
by clustering them by postal code, census tracts, etc., but
with some aggregation problems (30). However, most planar
location problems rely on the assumption that the demand

for customers is represented by a finite set of discrete
points (29).

Colombo and Dawid (31) explicitly investigate how firms
determine an optimal location choice by accounting for
technology spillover within a Cournot oligopoly. Thus, firms
can decide to locate as an isolated player or within an
industrial cluster, whereby there is a tendency for technology
spillover between firms in a spatial setting.

Daskin (32) splits location models into three types of
analytical models: continuous models, network models,
and discrete models. According to Daskin (32), analytical
models are not applicable to certain problems. The
main differences according to this classification are to
be found in the decision space (market) (33). Klose and
Drexl (2) adopt a clustering approach by distinguishing
between continuous location models, network models,
and mixed-integer programming models. The latter two
types of models are discrete optimization models, so this
classification has much in common with the classifications
mentioned earlier. They narrow down the mixed-integer
programming models into (1) single vs. multi-stage models,
(2) uncapacitated vs. capacitated models, (3) single vs.
multi-product models, (4) static vs. dynamic models,
(5) deterministic vs. stochastic models, (6) models with
and without routing options included, and (6) single
vs. multi-objective models. In his work, Bieniek (34)
presented a note on the facility location problem with
stochastic demands.

Traditionally, location problems consider exogenous
demand even though the firm may not know the exact
distribution of such endogenous demand and how it may
affect location choices (35). Such decisions have a strategic
impact on how the choice of location will influence the
competitive advantage of the firm. Stochastic and robust
optimization approaches are used in the context of facility
location problems to deal with demand uncertainty [e.g.,
(36–38)].

A further categorization splits location models into static
and deterministic, continuous, and stochastic problems
(39). Static and deterministic problems can be broken
down into median-based-models, covering based-models,
center models, and other models. As the covering models
focus on designing public services, they might not be
practical for business applications, but because those models
play an important part in location theory, they will be
at least sketched.

The p-center problem locates p facilities with the goal
of minimizing the maximum distance between a demand
point and its nearest facility. Thus, the p-center problem
is also called the minimax problem. It is probably one
of the most well-known problems in this category. For
business applications, the median problems are much
more applicable. Among these is the p-median model.
The p-median problem, introduced by Hakimi (40),
minimizes the total demand-weighted travel distance
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between the demand points and the facilities. In contrast
to the p-median model, the covering problem addresses
a certain service level. A demand is covered if it can
be served at a certain time or distance. This measure
describes the desired service level. The objective of the
covering problem is to minimize the total cost of reaching
that service level.

Uncertainty about the future is part of any model as
it is the strategic nature of facility location problems
(39). Dynamic location models consider an extended
planning horizon and generate robust location decisions.
Longer planning horizons and uncertainties in facility
location are addressed by dynamic location models.
Although the dynamic location models consider an
extended planning horizon, they are static in nature
because all parameters are defined in advance and
possible parameter changes in later periods are not
considered. For example, in their study, Silva et al. (41)
examine the Dynamic Facility Location Problem with
Modular Capacities (DFLPM) by generalizing location
problems and solving them using customized linear-
based heuristics for each given scenario and the relative
cost structures.

According to Correia and Melo (42), dynamic facility
location asserts that parameters in facility location
problems shift over the planning horizon. This compels
the firm to periodically review facility location decisions
over time to make an adaptation that provides a fit
with the changes in distribution network and demand
patterns (43).

Stochastic models assume that the input parameters are
mostly unknown in real-world applications. Owen and
Daskin (39) split the models into two different approaches,
which are the probabilistic approach and the scenario
planning approach. The former uses stochastic tools, the
latter considers scenarios in a what-if setting. Brandeau and
Chiu (1) presented an overview of representative problems
and established a classification scheme, which appears to
be more general. Their work includes a survey of more
than 50 studies with problems in location theory. Their
classification is divided into three characteristics, which are
the objective of the model, the decision variables, and the
system parameters.

Hamacher and Nickel (44) introduced a 5-parameter
classification using a formalization based on queuing theory.
It takes five parameters into account and was built on the
research of Eiselt et al. (45), (46), who focused on competitive
location models. They indicate that their taxonomy has
been a useful tool in designing and structuring lectures
and research papers. The benefit of their classification is
that not only classes of specific location problems are
described, (44). The taxonomy uses five parameters to
describe the underlying problem. The structure reminds
one of Kendall’s notation used in queuing theory (47).
These parameters are P1: information about the number

and type of new facilities, P2: location model type in
relation to the decision space, P3: detailed description of
the specific location model, P4: the relation between new
and existing facilities, and P5: detailed description of the
objective function.

A subset of symbols for each position is introduced
with respect to continuous, network, and discrete location
models. Although the classification can be applied to
a large variety of location models, Haase and Hoppe
(33) expanded the scheme by including additional
parameters for competitive location models. The resulting
taxonomy consists of six parameters using a similar
notation as described earlier, which are: characteristics of
competition, characteristics of decision space, modeling of
demand or market share, pricing strategy, objective, and
additional parameters.

Haase and Hoppe (33) mention that only a few authors
have discussed the shrinking or closing of facilities.

Some more specialized classification schemes can be
found by Handler and Mirchandani (48) in a 4-position
scheme, applicable to network location models with objective
functions of the center type. Carrizosa et al. (49) developed
a 6-position scheme for the classification of planar models,
referring mainly to the Weber problem.

Very little attention has been paid in the literature to
the closing or relocation of facilities. Revelle and Eiselt (50)
give a first overview of papers both for a competitive and
a noncompetitive setting, but do not set up a classification
scheme. Finally, they end up with two static models for the
shrinkage problem.

A classification scheme for facility
location models focusing on opening,
closing, and capacity decisions
incorporating competition

According to the different taxonomies described earlier,
it is necessary to set up a scheme that addresses the
objective of the model in this paper to get an expanded
and more diversified view of the body of literature. The
classification scheme includes the following parameters:
decision space, model objective, distance measuring,
time, competition, consumer and demand, single/multiple
products, homogenous/heterogeneous facilities, constraints,
opening and closing, and solution methods (linear
programming or heuristics).

Shrinking facility size and closing

There have been limited studies conducted on the topic
of shrinking and closing of facilities [for example, (51,
52)]. Most studies have extensively focused on location
problems, and resulting in a gap in literature. A good
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starting point is to be found in a model proposed by
Klincewicz et al. (53). They propose a discrete network
model with the objective of minimizing the total discounted
costs over a given planning horizon, which indicates that
it is a dynamic approach. Instead of distances, costs
play an important part in the model. The model allows
the use of concave operating costs. Competitors are not
considered, though it is to be assumed that the model
should be applied to business and not to public services.
The demands are determined by arbitrary demand patterns.
This allows one to model different demands at different
periods. As it is possible to shrink or expand facilities
in this model, this allows the modeling of facilities of
different sizes. The constraints in the model focus primarily
on the capacity of the facilities and the demand. To
incorporate the arbitrary demand patterns, Klincewicz et al.
(53) allowed both contraction and expansion as well as
closing and opening of locations. To solve the model,
the authors start with a myopic initial solution and then
apply a heuristic. Melanchrinoudis and Min (54) focused
on supply chain management objectives. They consider
the phase-out and relocation situation of a hybrid, two-
echelon plant/warehousing facility with respect to changes
in business environments. The decision space is discrete as
the possible locations are known in advance. The objective
of the model is to maximize the total profit in a given time
horizon with respect to location incentives. Distances are
measured in minutes. Competitors are not considered. The
demands of the customers in certain periods are known
as well and are not influenced by the location decision.
Melanchrinoudis and Min (54) do not consider special
product types. Instead, they use units to model both capacity
and demand. Because the goal is to relocate the facility,
there is no difference made between homogenous and
heterogeneous facilities. The major constraints of the model
pertain to production capacity and demand satisfaction. The
model either closes or opens exactly one facility. The model
then computes where and when to open and close. The model
is solved by using LINGO.

Bhaumik (52) examines existing facilities and the
corresponding network and finds that they do impose
additional constraints on the closure or elimination of
facilities and terms this as a “facilities delocation problem.”
In this study, the delocation problem is formulated as an
integer linear programming.

Wang et al. (55) consider a budget-constrained location
problem with the opening and closing of facilities. The model
is formulated in a discrete decision space. A set of nodes
of existing and possible locations is given. The objective of
the model is to minimize the total weighted travel distance
for customers. Distance is measured in Euclidean space,
but the distances are also weighted such that a certain
demand node could become more important than another.
The model is a single planning period model. Because the
objective is to minimize the total weighted travel distance, the

customers’ competitors are not considered in the model. The
consumers are modeled using demand nodes. A consumer
can be ranked higher by assigning a larger weight. As
capacity does not play a part in the model, demand is
not considered in the case of units. All facilities serve
the same product and are equal. The model employs two
major constraints: the first is a budget constraint for facility
opening and closing, and the second is the total number
of open facilities desired. Facilities may be closed down or
be open. As the problem is NP-hard, the authors developed
three heuristics.

Zhang and Rushton (56) developed a model that uses a
discrete decision space to optimize the size and location of
facilities in a competitive environment with the objective
of maximizing the spatial utility of users. Distances are
measured in Euclidean space. The authors consider only one
period. In contrast to the models mentioned previously, the
location of competitors is considered. The demand is also
known. Zhang and Rushton (56) consider a single product.
While facilities can differ in size, larger branches attract
more customers. The model incorporates such constraints
as budget and size. Locations can either be open or closed.
Heuristics are used to solve the model.

ReVelle et al. (57) considered closing facilities in their
model. They propose two models, one for firms with
competition and another for firms without competition. As
this paper will provide a model for firms with competition,
only the characteristics of the former are described. The
model uses a decision space in a network of discrete points.

The assumption is to retain a given number of facilities,
losing as little market share to the competitors as possible.
Thus, the model objective is to minimize the market
share lost. Distances are Euclidean and the model does
not consider multiple periods but takes competition into
account. A demand point is lost to a competitor when the
distance between one’s own nearest facility, is greater than
the distance of the nearest competitor. The demand is also
known in advance. The model uses both single products
and homogenous facilities. The authors considered only
the closure of a fixed number of facilities. The model is
solved using LINGO.

Bi-level models are competitive by nature and incorporate
the reaction of the follower. A first model deals with
the problem of locating new facilities in a market where
competitors are already operating (58). The new facilities
should be such that the profit is maximized. For this purpose,
the authors introduce an attraction index. According to the
bi-level approach, the competitor can react by adjusting
the attractiveness of existing facilities or by opening or
closing others to maximize the profit. The distance measure
is Euclidean. Multiple periods are not considered explicitly
due to the bi-level approach. The consumer’s demand for
a homogeneous product is modeled by the buying power
at the demand points. Because it is possible to adjust
the attractiveness of each facility, the model works with
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heterogeneous facilities. In this model, it is not possible to
adjust the attractiveness. For the existing companies in the
market, it is possible to open or close facilities. The authors
use a heuristic approach to solve the model.

Küçükaydin et al. (59) proposed another, similar model,
allowing the adjustment of the attractiveness of the follower
but not allowing the closing or opening of facilities.
The assignment of demand points to certain facilities is
determined by the attraction index.

A further bi-level approach is proposed by Drezner and
Drezner (60). They considered this a model for a company
entering a market knowing that a future competitor is
expected to enter the market. They state that the location
of one’s own facility should be chosen such that it is
optimal after the market entry of a new competitor. The
model objective is to maximize the market share. The
model uses a continuous decision space with distance
correction to ensure that a facility will not be located
directly on a demand point. The distance measure is
Euclidean. In this bi-level approach, only single periods
are considered. Demand is measured in buying power and
is aggregated at prespecified demand points. The model
does not consider multiple products. As the model deals
with several existing facilities having different attractiveness
levels, the facilities are completely heterogeneous. It
is not possible to influence the attractiveness level in
the model directly. The model does not incorporate
closing or opening decisions. The authors introduce three
solution approaches: the brute force approach; the pseudo-
mathematical programming approach; and the gradient
search approach.

A paper for bank networks was published by Ruiz-
Hermández et al. (61). The paper contains closing down as
well as long-term operations costs. It also assumes that it
might sometimes be necessary to resize branches. The model
is set up for a competitive environment and takes a ceding
market share into account. Distances are Euclidean. The
model does not include multiple periods. The customers are
known, capacities may vary at the locations, and facilities
can have different sizes. The problem is solved using the
CPLEX algorithm.

A paper by Bhaumik (52) introduces the de-location
problem with the objective of closing a prespecified number
of facilities and assigning demands to the remaining facilities.
The objective of the model is to minimize the total cost of
serving the demand nodes, assuming reassignment might
cause a higher distribution cost. In the model, distances
are not explicitly considered, but costs are given for all
assignment pairs. It is assumed that the cost is based
on distance. In his paper, Bhaumik (52) did not extend
the model to multiple periods, but the model could be
computed period by period. Competition is not considered
as the focus is on cost minimization. The demands of
the nodes are not known. Facilities in the model can
be assumed to be homogenous because Bhaumik (52)

did not consider any differences in terms of operational
costs or attractiveness. The model postulates that demand
is not lost through the closure of facilities. The only
impact is that there will be higher distribution costs
due to the new assignments. A linear solver was used
to run the model.

Methodology

Models for multi-period for facility
location

Most location models in the literature do not consider
either multiple periods or neglect competition in the model.
The model introduced in this study attempts to overcome
this limitation. It is based on a competitive, multi-period
environment and not only takes downsizing or closing of
certain facilities into consideration but also assumes that
a downsizing or closing of one facility might require the
expansion of others. Contraction of an existing facility is
also being considered as an option. Furthermore, competitors
are explicitly incorporated into our model. The demands are
assumed to vary over a chosen time horizon.

First, the model with a single product is demonstrated.
Second, the model is then extended by allowing multiple
products as well as the addition of several constraints,
because the single product assumption limits the
applicability. Both models are solved and computational
results are provided.

Model 1

The first proposed model considers an existing set of
facilities operating in a competitive environment in a market
with discrete demand points. The model considers two
different scenarios. First, the demand is known for all
periods in advance. This is solved using a robust approach.
Second, a method for solving the model period by period
is used, because demand can only be predicted more
accurately for the next period. The two approaches are
then compared. Operating a facility incurs a fixed cost.
Closing and opening of facilities will incur a cost just
like expansion or contraction. Finally, the model takes the
competitive environment into consideration. This is done
by using an attractiveness parameter, which indicates the
attractiveness of a certain facility. The model postulates that
the facility with the highest attraction will be assigned to
a demand point if it is open. The highest attractiveness
might also be at a competitor’s site. The prices for the
homogenous product can differ between the facilities as well
as between periods. A facility will be operating at a certain
capacity in each period.
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Mathematical formulation

Indexes

i Set of facilities
j Set of demands
t Set of periods

Model parameters

initialCapacityi The initial capacity of facility i in period 1
initialOpeni The initial status of facility i in period 1
priceit The price for selling a single unit at facility i in

period t
variableCostit The unit cost for selling a single unit at facility i in

period t
fixCostit The cost for having open facility i in period t
openingCostit The cost for opening facility i in period t
closingCostit The cost for closing facility i in period t
attractionijt The attraction value of a company’s own facility i

with respect to demand node j in period t
competitorsAttractionjt The highest attraction of competitors for demand

node j in period t
expansionCostit Fixed cost for expansion of facility i in period t
shrinkageCostit Fixed cost for contraction of facility i in period t
unitExpansionCostit Unit (variable) cost for expansion of facility i in

period t
unitShrinkageCostit Unit (variable) cost for contraction of facility i in

period t
demandjt The demand at demand node j in period t

assignmentijt =

{
1, if attractionijt ≥ competitorsAttractionjt

0, else

This parameter can be set to 1 if the attractiveness of a
company’s own facility i relative to a demand node j is greater
or equal to the highest attractiveness of the competitor for
the same node j in period t. It is used for the assignment of
facilities to a demand node.

Model variables

openit =

{
1,if facilityiremainsopenint

0,if facilityiisclosedint

openedit =

{
1,if faciltiyiisopenedint

0,else

closedit =

{
1,if faciltiyiisclosedint

0,else

expandedit =

{
1,if facilityiisexpandedint

0,else

shrunkit =

{
1,if facilityiisshrunkint

0,else
uPlusit Expansion in units at facility i in t
uMinusit Contraction in units at facility i in t
totalCapacityit Maximum capacity in units at i in period t
usedCapacityit Capacity utilized in units at i in period t

Objective function

Max
∑

i

∑
t

(
usedCapacityit

∗(priceit−variableCostit )−

fixCostit
∗openit−closingCostit

∗closedit−openingCostit
∗openedit

)
−

∑
i

∑
t

expansionCostit
∗expandedit∑

i

∑
t

unitExpansionCostit
∗uPlusit−

∑
i∑

t
shrinkageCostit

∗shrunkit−
∑

i

∑
t

unitShrinkageCostit

∗uMinusit

Subject to
1) openi1 = initialOpeni,∀i
2) totalCapacityi1 = initialCapacityi,∀i
3) usedCapacityit ≤ totalCapacityit,∀i, t
4) usedCapacityit ≤

∑
j assignmentijt

∗demandjt,∀i, t
5) totalCapacityit1 = totalCapacityit + uPlusit
−uMinusit,∀i,t
6) openit1 = openit + openedit−closedit,∀i,t
7) M∗expandedit ≥ uPlusit,∀i,t
8) M∗shrunkit ≥ uMinusit,∀i,t
9) totalCapacityit ≥ 0,∀i,t
10) totalCapacityit ≥ uMinusit,∀i,t
11) expandedit ≤ openit,∀i,t
12) shrunkit ≤ openit,∀i,t
13) M∗openit ≥ usedCapacityit,∀i,t
14)

∑
i assignmentijt ≤ 1,∀j,t

15) assignementijt,expandedit,shrunkit,openit,openedit,

closedit ∈ {0; ; 1} ,∀i, j,t
16) uPlusit,uMinusit,totalCapacityit,usedCapacityit ∈ N,∀i,t

Explanation

The objective function maximizes the profit. It consists of six
terms. The first term computes the net profit. The second
term includes the fixed cost component when a facility
is open. The third and fourth terms are for assigning a
closing or opening cost that occurs when a facility is opened
or closed, respectively. The last two terms consider the
expansion or contraction costs. Constraints (1) and (2) are
used to specify the open or closed status of each facility as well
as the initial capacity. The usage must never be greater than
the capacity. This is ensured by constraint (3). Constraint (4)
addresses the fact that the usage cannot exceed the assigned
demands. The capacity of the facilities might vary over time.
Constraint (5) computes the capacity for the following period
by adding the units of expansion or subtracting the units of
shrinkage from the current capacity. Constraint (6) is a key
constraint and is used for setting the status of a facility to
open or close. Constraint (7) sets expandedit to 1 if the facility
is expanded. Constraint (8) does the same for the contraction
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case. Constraint (9) ensures that the capacity will never
become negative, and constraint (10) states that the capacity
will always be greater or equal to a potential contraction.
Constraints (11) and (12) assert that only open facilities can
be expanded or contracted, respectively. Finally, constraint
(13) ensures that capacity will only be used if a facility is open
and constraint (14) postulates assigning a certain demand
only to one of the available facilities and only once.

Computational Results

The model was solved with five different settings
and a LINGO solver.

Performed checks

The model was tested with two additional data sets. Again,
the solutions were obtained in less than 1 second using
the same software and hardware. Several tests were applied
to confirm that the model is working correctly. All tests
were conducted on all three different data sets and are
listed hereunder.

1. Test: If assignmentijt = 1, is usedCapacityit = 0?
This test was conducted to confirm that a facility

only has used capacity if the corresponding assignment
variable is set to 1.

2. If assignemntijt = 1, is attraction = competitorsijt
Attractionjt?

This condition states that an assignment will only be made
if the attraction of the own facility with respect to demand
point is greater or equal to the attraction of all competitors in
the period t.

1. If expandedit = 1, is uPlusit = 0?
If a facility is expanded, the variable uPlus indicating the

amount of expansion must be positive.
2. If shrunkit = 1, is uMinus = 0?
If a facility is contracted, the variable uMinus indicating the

amount of contraction needs to be positive.
3. If expandedit = 1, is ca??acityit1 = capacityituPlusit?
If a facility is expanded in period t, the capacity of

the facility in the preceding period must be expanded by
uPlusit units.

4. If shrunkit = 1, is capacityit1 = capacityit−uMinusit?
If a facility is contracted in period t, the capacity of

the facility in the preceding period must be reduced by
uMinusit units.

5. If closedit = 1, is openit1 = 0?
If a facility is closed at the end of period t, it must be closed

in the preceding period.
6. If openedit = 1, is openit1 = 1?
If a facility is opened at the end of period t, it must be open

in the preceding period.
7. If usedit = 0, is openit = 1?

This test was conducted to confirm that a facility only has
used capacity if it is open.

All the tests showed positive results and confirmed that the
model was working in the expected way. The only remark
that must be made here is that “M” is an arbitrarily large
positive number, larger than the highest potential capacity.
The highest potential capacity will never exceed the demand
at all demand points in any period.

Extension of model 1

To get a better understanding of the model’s behavior, several
additional scenarios were constructed. First, the number of
demand locations was extended to 10. The problem was
solved quickly. Second, the periods were extended to 10.
Again, a solution to the problem could be obtained in about
1 second. Third, the number of facilities was also extended
to 10. For the first set of data, the model could not be solved
even after x hours of computation time. For two subsequent
data sets, the optimal solution could be determined in 2
seconds (Table 1).

Another larger data set with 100 facilities, 100 demand
points, and 100 periods was also generated. The complexity
of the data increased exponentially, and the model with
1,089,800 variables was solved in about 2.5 minutes.

The following table summarizes the solution times for the
multiple datasets that were used to solve Model 1.

To gauge the problem size that can be solved using
standard software, several problem instances were generated.
The 100 x 100 x 100 scenario could not be solved within
a reasonable time. A 150 x 150 x 150 scenario with more
than 3.5 million variables resulted in a LINGO buffer
error (Table 2).

Retrieving the relaxed solution from the
model

To obtain an upper bound for the solution of the model, all
binary and integer constraints were removed from the model.
The following results were obtained:

The results of the objective function values (OFVs) show
that the relaxed model solutions provide an upper bound that

Table | 1 Variables and runtimes for different datasets.

Dataset Number of variables Elapsed runtime

3 x 3 x 3 102 < 1 sec
5 x 5 x 5 340 < 1 sec
10 x 10 x 10* 1,880 30–250 sec
100 x 100 x 100 1,089,800 n.a.

*Depending on the data

Source: authors.
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Table | 2 Objective function values for different model sizes both for
mixed integer model and relaxed model.

Data Set Objective function value

Regular model Relaxed model

5 x 5 x 5 5.50502E08 5.5116E8
10 x 10 x 10 4.18601E08 4.18671E8
100 x 100 x 1001 2.05094E11 1.10398E12

Source: authors.
1Objective function value of a feasible but not of the optimal solution.

is relatively close to the OFV of the optimal solution for the
first two (smaller) problem instances.

Solving the model in dynamic manner

It is relatively easier to forecast demand in the short term
than in the long term. Thus, the model was also solved using
a dynamic approach; this means the problem is solved for
each period considering only the demand for that period.
A dynamic solution will result in more frequent opening
and closing of facilities due to the myopic approach. An
analysis was performed to determine whether a robust
solution (solving the model once for the entire planning
horizon, even though the demand forecasts, especially for
the later periods in the planning horizon, may be inaccurate)
or a dynamic approach (solving the model once in each
period and using that solution and the next period’s forecast
demand to determine the next period’s solution) will result
in a better solution. With respect to the model and its
mathematical formulation, a single period-based approach
was not implementable as the open status and current
capacity are always known for the initial period. Thus,
the consecutive period was included in the model and all
variables were determined for that period. After obtaining
the variable values, the next run was begun using the just
generated variable values as initial parameters. Figure 1
demonstrates the procedure.

FIGURE 1 | Dynamic solution approach.

The dynamic solution was implemented using LINGO
scripting. The scripting made it possible to change the
relevant variables in the model. Several checks were
performed to explore the models’ behavior and to detect
the differences between the two approaches (robust
versus dynamic).

1. Demand data constant over time horizon
The two approaches show a difference both in terms of

capacity and the opening status of facility 1. The robust
solution contains an extension of the capacities; the dynamic
one keeps the capacity of the initial level for all periods
due to the fact that the expansion cost cannot be offset by
net profit from one period. The opening status is the same
for both models.

2. Variable demand data
Demand can be estimated more accurately in the short-

run, but it is difficult to do so for periods far into the future
due to a variety of factors, including changes in trends,
customer preferences, seasonality, and others. Because the
dynamic model only considers the current and next two
periods, the solution provided by the two models will be
different. The dynamic approach closes a facility immediately
if there is no demand in the next period and if the fixed
costs are significant. A disadvantage of the dynamic model
is that it makes myopic decisions based on the next period’s
demand. For example, it may close a facility because there
is no demand in the next period and open it again in a
subsequent period when demand is high. Once it is closed,
it will only be opened if the costs can be offset by demand
in the next period. The robust approach shows a different
solution because demand for multiple periods into the future
is assumed to be known. A comparison of objective function
values is difficult as the dynamic approach always generates
an objective value for two consecutive periods. Variability
in net profit. A variability in net profit shows an expansion
of capacity in the robust approach. The facility is closed
down when net profit decreases and reopened when net profit
increases again. The dynamic approach keeps the facilities
closed. Lowering opening and closing costs influences the
behavior. If the opening and closing costs are relatively low,
facilities will be closed and reopened. Demand is constantly
decreasing. The behavior of the model in terms of constantly
decreasing demand again depends on the net profIt. If the net
profit is relatively high, the robust model extends the capacity
to be able to satisfy higher demand in the earlier periods.
All facilities are kept open throughout the entire planning
horizon. If net profit is relatively low, then those facilities
with the highest costs are closed first. The dynamic model
shows different behavior. Though there is a higher demand
than capacity at the beginning, no expansion is made, even in
terms of higher net profit. If net profit decreases, the model
closes only that facility with the smallest net profit first. Later,
all facilities will be closed at the same time.

In a nutshell, the dynamic model is much more sensitive
toward variability in demand. The better knowledge of future
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demands will enable us to satisfy higher demands in earlier
periods when using the robust approach.

Conclusion

The models presented in this study provide an extension
of existing facility location models that can be applied to
a variety of location problems in commercial and industry
sectors that need to make decisions considering future
periods and competitors. An initial model focusing on a
single product was developed. The model was extended by
including multiple products. The developed heuristic shows
multiple options for solving the problem, including their
advantages and disadvantages, respectively. The Java code
and LINGO fragments thus developed can be used to provide
easy access to related problems.

The research in this paper gives direction to further topics
that are of great interest and can be very useful for the daily
application of the model. The attraction parameter plays
a central role in the assignment of a facility. The model
takes it as a given parameter. The model can be extended
by setting up an attraction function which incorporates
additional parameters and may change over time, depending
on the decisions made by the model. A utility function can be
used for modeling purposes. The current model has several
constraints. With respect to certain applications, additional
constraints may become necessary, such as subsidies, taxes,
space limitations, laws, etc. The development of these
constraints will make the model more realistic, but for
every problem, the model needs to be adjusted to the
relevant use case.

References

1. Brandeau ML, Chiu SS. An overview of representative problems in
location research. Manag Sci. (1989) 35:645–74.

2. Klose A, Drexl A. Facility location models for distribution system design.
Eur J Oper Res. (2005) 162:4–29.

3. Melo MT, Nickel S, Saldanha-da-Gama F. Facility location and supply
chain management - a review. Eur J Oper Res. (2009) 196:401–12. doi:
10.1016/j.ejor.2008.05.007

4. Correia I, Melo T. Multi-period capacitated facility location under
delayed demand satisfaction. Eur J Oper Res. (2016) 255:729–46. doi:
10.1016/j.ejor.2016.06.039

5. Wilhem W, Han X, Lee C. Computational comparison of two
formulations for dynamic supply chain reconfiguration with capacity
expansion and contraction. Comput Oper Res. (2013) 40:2340–56. doi:
10.1016/j.cor.2013.04.011

6. Das S, Roy S, Weber G. Heuristic approaches for solid transportation-
p-facility location problem. Cent Eur J Oper Res. (2020) 28:939–61.
doi: 10.1007/s10100-019-00610-7

7. Jakubovskis A. Strategic facility location, capacity acquisition, and
technology choice decisions under demand uncertainty: robust vs. non-
robust optimization approaches. Eur J Oper Res. (2017) 260:1095–104.
doi: 10.1016/j.ejor.2017.01.017

8. von Thünen JH. Der isolierte staat in beziehung auf landwirtschaft und
nationalökonomie. Jena: Verlag von Gustav Fischer (1910).

9. Christaller W. Die zentralen orte in süddeutschland. Trans. Baskin, C. W.
Englewood Cliffs, NJ: Central Places in Southern Germany (1933).

10. Weber A. Über den Standort der Industrie. Oxford: University Press
(1909).

11. Isard W. Location and space-economy; a general theory relating to
industrial location, market areas, land use, trade, and urban structure.
New York, NY: Massachusetts Institute of Technology and Wiley (1956).

12. Hotelling H. Stability in competition. Econ J. (1929) 39:41–57.
13. Aboolian R, Berman O, Krass D. Competitive facility location model

with concave demand. Eur J Oper Res. (2006) 181:598–619.
14. Akinc U, Khumuwala BM. An efficient branch and bound algorithm for

the capacitated warehouse location problem. Manag Sci. (1977) 23:585–
94.

15. Ashtiani MG, Makui A, Ramezanian R. A robust model for a leader-
follower competitive facility location problem in a discrete space. Appl
Math Model. (2013) 37:62–71.

16. Chandrasekaran R, Daughety A. Location on tree networks: p-centre
and p-dispersion problems. Math Oper Res. (1981) 6:50–7.

17. Cooper LL. The transportation-location problem. Oper Res. (1972)
20:94–108.

18. Drezner Z, Steiner G, Wesolowsky GO. One-facility location with
rectilinear tour distances. Nav Res Logist. (1985) 32:391–405.

19. Drezner T. Location of multiple retail facilities with limited budget
constraints — in continuous space. J Retailing Consum Serv. (1998)
5:173–84.

20. Drezner T. Locationg a single new facility among existing, unequally
attractive facilities. J Reg Sci. (1994) 34:237–52.

21. Efroymson MA, Ray TL. A branch-bound algorithm for plant location.
Oper Res. (1966) 17:361–8.

22. Elzinga J, Hearn DW. Geometrical solutions for some minimax location
problems. Transp Sci. (1972) 6:379–94.

23. Geoffrion AM. A guide to computer-assisted methods for distribution
systems planning. Sloan Manag Rev. (1975) 16:17–41.

24. Goldman AJ. Optimal location in simple networks. Transp Sci. (1971)
5:212–21.

25. Plastria F. Avoiding cannibalisation and/or competitor reaction in
planar single facility location. J Oper Res Soc Jpn. (2005) 48:148–57.

26. ReVelle CS, Scholssberg M, Williams J. Solving the maximal covering
location problem with heuristic concentration. Comput Oper Res. (2008)
35:427–35.

27. van Roy TJ, Erlenkotter D. A dual-based procedure for dynamic facility
location. Manag Sci. (1982) 28:1091–105.

28. Francis RL, McGinnis LF, White JA. Locational analysis. Eur J Oper Res.
(1983) 12:220–52.

29. Byrne T, Kalcsics J. Conditional facility location problems with
continuous demand and a polygonal barrier. Eur J Oper Res. (2021)
296:22–43. doi: 10.1016/j.ejor.2021.02.032

30. Francis R, Lowe T. Aggregation in location. In: Laporte G, Nickel S,
Saldanha da Gama F editors. Location science. Cham: Springer (2019).
p. 537–56.

31. Colombo L, Dawid H. Strategic location choice under dynamic
oligopolistic competition and spillovers. Working papers in economics
and management. Bielefeld: Bielefeld University (2013).

32. Daskin MS. What you should know about location modeling. Nav Res
Logist. (2008) 55:283–94.

33. Haase K, Hoppe M. Standortplanung unter wettbewerb. Technische
universtität dresden. Dresden: Die Professeron des Instituts für
Wirtschaft und Verkehr (2008).

34. Bieniek M. A note on the facility, location problem with stochastic
demands. Omega. (2015) 55:53–60. doi: 10.1016/j.omega.2015.02.006

https://doi.org/10.1016/j.ejor.2008.05.007
https://doi.org/10.1016/j.ejor.2008.05.007
https://doi.org/10.1016/j.ejor.2016.06.039
https://doi.org/10.1016/j.ejor.2016.06.039
https://doi.org/10.1016/j.cor.2013.04.011
https://doi.org/10.1016/j.cor.2013.04.011
https://doi.org/10.1007/s10100-019-00610-7
https://doi.org/10.1016/j.ejor.2017.01.017
https://doi.org/10.1016/j.ejor.2021.02.032
https://doi.org/10.1016/j.omega.2015.02.006


10.54646/bijomrp.2022.03 27

35. Basciftci B, Ahmed S, Shen S. Distributionally robust facility location
problem under decision-dependent stochastic demand. Eur J Oper Res.
(2021) 292:548–61. doi: 10.1016/j.ejor.2020.11.002

36. Álvarez-Miranda E, Fernández E, Ljubic I. The recoverable robust
facility location problem. Transp Res B Methodol. (2015) 79:93–120.

37. An Y, Zeng B, Zhang Y, Zhao L. Reliable p-median facility location
problem: two-stage robust models and algorithms. Transp Res B
Methodol. (2014) 64:54–72.

38. Shen ZM, Zhan RL, Zhang J. The reliable facility location problem:
formulations. heuristics, and approximation algorithms. INFORMS J
Comput. (2011) 23:470–82.

39. Owen SH, Daskin MA. Strategic facility location: a review. Eur J Oper
Res. (1998) 111:423–47.

40. Hakimi SL. Optimum distribution of switching centers in a
communication network and some related graph theoretic problems.
Oper Res. (1965) 3:462–75.

41. Silva A, Aloise D, Coelho LC, Rocha C. Heuristics for the dynamic
facility location problem with modular capacities. Eur J Oper Res. (2021)
290:435–52. doi: 10.1016/j.ejor.2020.08.018

42. Correia I, Melo T. Multi -period capacitated facility location under
delayed demand satisfaction. Schriftenreihe Logistik der Fakultät für
Wirtschaftswissenschaften der htw saar, 9. (2015). Available online at:
http://hdl.handle.net/10419/114500

43. Jang H, Hwang K, Lee T, Lee T. Designing robust rollout plan for better
rural perinatal care system in Korea. Eur J Oper Res. (2019) 274:730–42.

44. Hamacher HW, Nickel S. Classification of location models. Location Sci.
(1998) 6:229–42.

45. Eiselt HA, Laporte G, Thisse J-F. Competitive location models: a
framework and bibliography. Transp Sci. (1993) 27:44–54.

46. Eiselt HA, Laporte G. Competitive spatial models. Eur J Oper Res. (1989)
39:231–42.

47. Kendall DG. Stochastic processes occurring in the theory of queues and
their analysis by the method of the imbedded markov chain. Ann Math
Stat. (1953) 24:338–54.

48. Handler G, Mirchandani P. Location on networks: theory and algorithms.
Cambridge, MA: MIT Press (1973).

49. Carrizosa E, Conde E, Munoz-Marquez M, Puerto J. The generalized
weber problem with expected distances. RAIRO Rech Opérationnelle
Oper Res. (1995) 29:35–57.

50. Revelle CS, Eiselt HA. Location analysis: a synthesis and survey. Eur J
Oper Res. (2005) 165:1–19.

51. ReVelle C, Murray AT, Serra D. Location models for ceding market share
and shrinking services. Omega. (2007) 35:533–40.

52. Bhaumik PK. Optimal shrinking of the distribution chain: the facilities
delocation decision. Int J Syst Sci. (2010) 41:271–80.

53. Klincewicz JG, Luss H, Yu C-S. A large-scale multilocation capacity
planning model. Eur J Oper Res. (1988) 34:178–90.

54. Melanchrinoudis E, Min H. The dynamic relocation and phase-out of
a hybrid, two-echelon plant/warehousing facility: a multiple objective
approach. Eur J Oper Res. (2000) 123:1–15.

55. Wang Q, Batta R, Bhadury J, Rump CM. Budget constrained location
problem with opening and closing of facilities. Comput Oper Res. (2003)
30:2047–69.

56. Zhang L, Rushton G. Optimizing the size and locations of facilities
in competitive multi-site service systems. Comput Oper Res. (2008)
35:327–38.

57. ReVelle C, Murray AT, Serra D. Location models for ceding market share
and shrinking services. Int J Manag Sci. (2005) 36.

58. Küçükaydin H, Aras N, Altinel IK. A leader-follower game in
competitive facility location. Comput Oper Res. (2012) 39:437–48.

59. Küçükaydin H, Aras N, Altinel IK. Competitive facility location
problem with attractiveness adjustment of the follower: a
bilevel programming model and its solution. Eur J Oper Res.
(2011) 208:206–20.

60. Drezner T, Drezner Z. Facility location in anticipation of future
competition. Location Sci. (1998) 6:155–73.

61. Ruiz-Hermández D, Delgado-Gómez D, López-Pascual J. Restructuring
bank networks after mergers and acquisitions: a capacitated delocation
model for closing and resizing branches. Comput Oper Res. (2014)
62:316–24.

62. Plant Closing News. Market intelligence from project development
services. (2012). Available online at: http://plantclosings.com

https://doi.org/10.54646/bijomrp.2022.03
https://doi.org/10.1016/j.ejor.2020.11.002
https://doi.org/10.1016/j.ejor.2020.08.018
http://hdl.handle.net/10419/114500
http://plantclosings.com

	Reconfiguring a multi-period facility model—An empirical test in a dynamic setting
	Introduction
	Literature review
	Location models
	A classification scheme for facility location models focusing on opening, closing, and capacity decisions incorporating competition
	Shrinking facility size and closing

	Methodology
	Models for multi-period for facility location
	Model 1

	Mathematical formulation
	Indexes
	Objective function
	Explanation
	Computational Results
	Performed checks
	Extension of model 1
	Retrieving the relaxed solution from the model
	Solving the model in dynamic manner

	Conclusion
	References


