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Flexible flow shop scheduling (FFSS) is an NP-hard combinatorial optimization problem. Solving this problem using
mathematical modeling approaches is very difficult. Mega-heuristic algorithms, such as the genetic algorithm (GA)
and tabu search (TS), are powerful tools for finding near-optimal solutions to problems of this type. This paper
develops a GATS model by combining GA and TS for solving FFSS problems. In the model, GA is used as the
platform for global search, and TS is used to support GA in local search. This paper also uses the design of
experiments (DOE) to optimize the parameters of the GATS model. The performance of the models, GATS and
GATS with DOE, is compared with traditional heuristics being used. The result indicates that the models are good
approaches for FFSS problems.
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Introduction

Scheduling problems define the sequence in which a group
of orders is efficiently processed through several machines.
Flow shop scheduling (FSS) problems consider m machines
and n orders, and all orders are processed in the same
sequence. Parallel machine scheduling (PMS) problems
involve sending n jobs to m parallel machines. An order can
be processed on any machine. Machines can be homogeneous
or heterogeneous. Machines are homogenous when they
have the same processing time for each job. Machines are
heterogeneous when the times to process the same job on
different machines are different.

Flow shop scheduling problems are problems that
combine FFS problems and PMS problems. So, FFSS
problems are more complicated than FFS problems and
PMS problems. FFSS problems include dispatching n jobs
across w stations; each station has several parallel machines.
Each job is executed sequentially through the stations in

the same sequence, and only one machine at each station is
selected for execution.

The problem to be solved is an FFSS problem, with
the assumption that the orders are ready at the start of
the scheduling process. The objective of the problem is to
minimize the total tardiness of orders. The constraints are
on the sequence of orders, on the sequence of operations in
each order, on the allocation of orders on parallel machines
in each station, on machine changeover time, and on batches
produced in each machine.

The model of the problem is built based on the
above assumptions, objectives, and constraints. The GATS
algorithm is a combination of GA and TS, with the
foundation of GA. Based on the model of the problem,
the GATS algorithm will find a good solution for the
problem. Design of experiment (DOE) is used to optimize
the parameters of the GATS model. The solutions of
GATS and GATS with DOE are compared with the
solutions of the traditional heuristics being used to evaluate
their effectiveness.
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Flexible flow shop scheduling

Flow shop scheduling is renowned and classified as an NP-
hard optimization problem (Berlinska and Przybylski, 2021),
and several algorithms have been developed to overcome this
problem (1, Lee and Loong, 2019). Palmer et al. and Gupta
et al. proposed heuristic methods to solve n-job problems on
m-machines (2). Chen et al. applied GA to these problems.
However, the problem solving time of GAs is quite long.

The PMS problem has two distinct decisions: allocation
and sequencing. Allocation is a decision concerning the
assignment of jobs to machines, while sequencing is to order
the jobs assigned to each machine (3). When the number
of machines is large, mega-heuristic algorithms such as GA
and TS are usually used instead of optimal methods to solve
the problem. To reduce the time to solve the problem, one
solution is to coordinate between GA and TS (where GA is
used for global search and TS is used for local search).

Genetic algorithm

Genetic algorithm, first introduced by Holland in 1975, is
a powerful search engine to solve optimization problems
using evolution and natural selection of selected individuals
called chromosomes. Feasible solutions to the problem are
modeled by chromosomes. The population of chromosomes
represents the solution space of the problem. Chromosomes
are represented by strings. A method of coding is used to
define the string format for the chromosomes.

Each chromosome has a corresponding fitness value. The
fitness function is a measure of the extent to which the
objective of the problem is achieved. The fitness function is
derived from the objective function of the problem.

An initial population is made up of several chromosomes.
The next population is created by applying genetic
operators to the chromosomes of the current generation.
Genetic operators include selection, crossover, mutation, and
replacement. The algorithm creates a new population from
the existing population. The next population is probably
better than the current population. This process is repeated
until a specified stopping condition is met.

Tabu search

Tabu search, introduced by Glover and Laguna in 1997, is also
an effective search engine to solve optimization problems.
Feasible solutions to the problem are modeled by strings.
The population of strings represents the solution space of
the problem. Strings are represented by codes. A method of
coding is used to define the string format for the codes.

Each string has a corresponding evaluation value. The
evaluation function is a measure of the extent to which
the objective of the problem is achieved. The evaluation
function is derived from the objective function of the
problem. The F-best value is the best evaluation value found
during the search.

Tabu search explores the solution space beyond local
optimality. The properties of the search path are memorized,
and choices are made to guide the search out of the
local optimum and into different regions. Some moves
to previously explored areas are prohibited to avoid local
optimization. Recent moves are taboo and stored in the tabu
list. The tabu list identifies all moves that do not apply to
the current solution. The size of the tabu list is an algorithm
parameter that needs to be determined.

An initial solution is identified. The neighborhood
operator will determine the neighborhood region for the
current solution. The next solution, which may not be as
good as the current solution, is determined by applying the
selection operator to select the best solution in the current
neighborhood region. The selected solution must not violate
the tabu list. The process is repeated until a specified stopping
condition is met.

The flexible flow shop scheduling
problem

The problem to be solved is an FFSS problem with nine
orders, Oi, i = 1÷ 9, and scheduling on four stations, Sj, j = 1
÷ 4. Each order consists of many products, manufactured in
batches at each machine in the stations. Each station has three
homogeneous machines. The due time Di, the processing
time Pij, and the batch time Bij for order i, i = 1÷ 9, on station
j, j = 1÷ 4, are estimated in Table 1.

The setup times of the machines in station j are estimated
in Table 2.

The model is set up with variables. TSijk being the time to
start order Oi, i = 1 ÷ 9 on station Sj, j = 1 ÷ 4, machine k,
k = 1 ÷ 3; Xijk being the binary variable, whether order Oi,
i = 1 ÷ 9 will process on station Sj, j = 1 ÷ 4, machine k,
k = 1 ÷ 3 or not; TEijk being the time to end order Oi, i = 1
÷ 9 on station Sj, j = 1 ÷ 4, machine k, k = 1 ÷ 3; Ti being
the tardiness time of job i. The model of the problem is as
follows:

Tmin = MinT, T = 6(Ti, i = 1÷ 9)

St.

– TEijk = TSijk + (Sj + Pij) ∗ Xijk, i = 1 ÷ 9, j = 1 ÷ 4,
k = 1÷ 3

– Ti = max (TEi4k – Di, 0), i = 1÷ 9, k = 1÷ 3
– 6kXijk = 1, 6iXijk = 1, i = 1÷ 9, j = 1÷ 4, k = 1÷ 3
– TSijk ≥Max (TSi(j−1)k + Bi(j−1), TE(i−1)jk), i = 1÷

9, j = 1÷ 4, k = 1÷ 3
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TABLE 1 | Input data for model.

I Dj (h) Pi1 (h) Pi2 (h) Pi3 (h) Pi4 (h) Bi1 (h) Bi2 (h) Bi3 (h) Bi4 (h)

1 21 20.04 12.14 0 13.74 1.33 4.83 0 2.5
2 12 6.83 10.62 7.63 1.33 0.92 1.75 1.57 0.67
3 15 0 4.58 1.65 7.04 0 1.17 1.31 0.09
4 11 23.05 7.42 0 0 0.28 0.12 0 0
5 21 0 5.39 9.18 0 0 0.31 0.68 0
6 25 0 2.67 8 0 0 1 3 0
7 18 9 13 14.67 3.67 1.35 1.95 2.2 0.55
8 20 0 3.12 3.63 0 0 1.81 2.1 0
9 18 0 1.17 1.53 0 0 2.33 3.06 0

TABLE 2 | Setup times of machine stations.

j 1 2 3 4

Sj (h) 0.15 0.2 0.15 0.1

– TSij1 = max(0, min(TE(i−1),j1)), i = 1÷ 9, j = 1÷ 4
– TSijk = max(min(TE(i−1)jk), TSij(k−1) + Bij), i = 1÷

9, j = 1÷ 4, k = 2÷ 3
– TSijk, TEijk ≥ 0; Xijk = {0,1}, i = 1 ÷ 9, j = 1 ÷ 4,

k = 1÷3

The company is currently using the LPT dispatching
method. The objective value of T is 46.93 (h).

The GATS model for the Flexible
flow shop scheduling problem

The above FFSS problem is a non-linear problem with a
solution space of 4∗9!, or 1,451,520. The GATS model is used
to solve the problem. In the model, GA is used to perform a
global search of the solution space, and TS is used to perform
a local search to refine the solution found by GA. The GATS
procedure is as follows:

Step 1: Initialize the GATS model.
Step 2: Generate the initial population, P(0). Set k to 0.
Step 3: Generate elite population PE(k).
Step 4: Generate the genetic population PG(k).
Step 5: Generate the neighborhood population PN (k).
Step 6: Generate the next population P(k+1). Set
k = k + 1.
Step 7: Check the termination rule. If not, return to Step
3. If yes, finish the loop.
Step 8: Run the algorithm a number of times to choose
the best scheduling result.

Step 1: Initialize the GATS model.
This step sets up factors in GATS models, including the

method of coding, the GA parameters, the TS parameters,
and the termination rule.

The method of coding: Each chromosome C is a string
of four sub-chromosomes, Sj, j = 1 ÷ 4, corresponding to
four stations. The orders are numbered from 1 to 9. Each
sub-chromosome is a string of nine genes, Gi, i = 1 ÷ 9,
corresponding to nine orders. The sequence of genes in a sub-
chromosome represents the sequence of orders scheduled in
the corresponding station:

C = [S1, S2, S3, S4]; Sj =

(Gj1, Gj2, Gj3, Gj4, Gj5, Gj6, Gj7, Gj8, Gj9), j = 1÷ 4

The GA parameters include fitness function, population
size, and the parameters of GA operators, including selection,
crossover, mutation, and replacement operators. The fitness
function F is defined as Fi = Tmax – Ti, where Fi and Ti
are the fitness and objective values of chromosome i and
Tmax is the maximum objective value in the population. The
crossover method is POX (precedence operation crossover),
the mutation method is REM (reciprocal exchange mutation),
and the replacement method is acceptance threshold. The
model parameters P, Pc, Pm, and K are chosen as follows:

P = 9, Pc = 0.8; Pm = 0.2,K = 2

The TS parameters include the neighborhood operator
and the tabu list. The neighborhood operator uses the
SWAP method to find the neighborhood chromosomes of
a chromosome. The tabu list contains the chromosomes
found in the previous iterations. At the end of each iteration,
chromosomes moving into the next population must not be
on the tabu list.
The termination rule: The best objective value of the

population Tmin does not improve or decrease after 10
consecutive iterations.

Step 2: Generate the initial population P(0) and set k = 0.
The initial population consists of nine chromosomes.

There are four chromosomes generated from four
heuristic rules: EDD, ERD, SPT, and LPT. The remaining
chromosomes R1, . . ., R5 are randomly generated. The
chromosomes in the initial population, arranged in
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TABLE 3 | The initial population P(0).

P(0) S1 S2 S3 S4 Ti (h) Fi (h) Pi

EDD 423798156 423798156 423798156 423798156 9.41 37.52 0.215
ERD 123456789 123456789 123456789 123456789 13.68 33.25 0.191
R2 741295863 172635498 876425913 238915674 15.21 31.72 0.182
SPT 356892714 968354217 149382657 456892731 16.34 30.59 0.176
R1 247195683 512637894 856724913 436215879 30.32 16.61 0.095
R4 546298173 342156879 874256913 236194567 33.87 13.06 0.075
R3 146295873 372651489 372456918 136254897 39.32 7.61 0.044
R5 826495173 649153872 124736985 631294758 43.15 3.78 0.022
LPT 417235689 712453869 756283914 137245689 46.93 0 0

descending order of their objective values with their
corresponding objective and fitness values, are shown in
Table 3.

P(0)
= {EDD, ERD, R2, SPT, R1, R4, R3, R5, LPT}

This step also initializes the tabu list, TL, containing the
chromosomes in P(0).

TL = {EDD, ERD, R2, SPT, R1, R4, R3, R5, LPT}

Step 3: Generate an elite population PE(k).
This step uses the selection operator to generate the

elite population PE(k) from P(k). Each chromosome in the
current population has a corresponding fitness value Fi and
is selected for inclusion in the elite population PE(k), with the
selection probability Pi determined as follows:

Pi = Fi/6i=1÷9(Fi)

The selection probabilities Pi are calculated as shown in
Table 3. Random numbers are generated nine times based
on Pi; the chromosomes in P(0) selected into the population
PE(0) are as follows:

P(0)
E = {R2, ERD, SPT, R3, R3, SPT, ERD, R4, EDD}

TABLE 4 | The crossover population PC.

PC S1 S2 S3 S4 T

C1 421356789 421356789 421356789 421356789 28.16
C2 327498156 327498156 327498156 327498156 32.05
C3 426958713 367254819 137245698 326548971 12.84
C4 136589274 983651427 493826517 146589273 21.29

TABLE 5 | The mutation population PM.

PM S1 S2 S3 S4 T

M1 741259863 172635498 876425913 238915674 17.15
M2 356892714 968453217 149382657 456892731 27.03

TABLE 6 | The neighborhood population PN
(0).

PN (0) S1 S2 S3 S4 T Tabu

N1 423798156 423798156 423798156 423798156 9.41 Yes
N2 123456789 123456789 123456789 123456789 13.68 Yes
N3 172635498 741295863 876425913 238915674 14.11 No
N4 968354217 356892714 149382657 456892731 15.02 No
N5 546298173 342156879 236194587 874256913 25.94 No
N6 247195683 512637894 436215879 856724913 26.71 No
N7 146295873 372456918 372651489 136254897 38.79 No
N8 826495173 124736985 649153872 631294758 39.17 No
N9 712453869 417235689 756283914 137245689 42.13 No
N10 421356789 421356789 421356789 421356789 28.16 No
N11 327498156 327498156 327498156 327498156 32.05 No
N12 367254819 426958713 137245698 326548971 11.25 No
N13 136589274 493826517 983651427 146589273 75.00 No
N14 172635498 741259863 876425913 238915674 33.91 No
N15 356892714 968453217 456892731 149382657 18.55 No

TABLE 7 | The next population P(1).

P(1) S1 S2 S3 S4 T

EDD 423798156 423798156 423798156 423798156 9.41
N12 367254819 426958713 137245698 326548971 11.25
ERD 123456789 123456789 123456789 123456789 13.68
N3 172635498 741295863 876425913 238915674 14.11
N4 968354217 356892714 149382657 456892731 15.02
R2 741295863 172635498 876425913 238915674 15.21
SPT 356892714 968354217 149382657 456892731 16.34
R1 247195683 512637894 856724913 436215879 30.32
R4 546298173 342156879 874256913 236194567 33.87

Step 4: Generate the genetic population PG(k).
This step uses the crossover and mutation operators

to generate the genetic population PG(k) from the elite
population PE(k). The genetic population PG(k) includes
the new chromosome generated from the crossover and
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TABLE 8 | The results after 21 iterations.

Iterations 1 2 3 4 5 6 7 8 9 10 11 12 . . . 21

T(h) 9.41 8.89 8.89 6.11 6.11 5.55 5.55 5.12 5.12 3.82 3.82 2.37 . . . 2.37

TABLE 9 | The results after 10 runs.

Runs 1 2 3 4 5 6 7 8 9 10

T(h) 2.37 5.98 4.86 3.71 3.63 5.01 4.12 2.88 3.96 3.82

mutation operators. The chromosomes of PE(0) are selected
to be included in the crossover list Pc with a crossover
probability of 0.8. After generating nine random numbers,
the set Pc is determined as follows:

Pc = {EDD, ERD, SPT, R3}.

Each pair of chromosomes in Pc is selected to cross over
by the POX method, resulting in two new chromosomes in
population PC. R2 and ERD are crossed over to each other
and generate two children, C1 and C2. SPT and R4 are
crossed over to each other and generate two children, C3 and
C4. The chromosomes in PC and their objective values are
shown in Table 4.

PC
= {C1, C2, C3, C4}

The chromosomes of PE(0) are also selected to be included
in the mutation list Pm, with a mutation probability of
0.2. After generating nine random numbers, the set Pm is
determined as follows:

Pm = {R2, SPT}.

Each chromosome in Pm is selected to mutate by the REM
method, resulting in one new chromosome in population

PM . R3 is mutated and generates M1. SPT is mutated and
generates M2. The chromosomes in PM and their objective
values are shown in Table 5:

PM
= {M1, M2}

After crossover and mutation, six new chromosomes are
created in the population PG(0). Their chromosomes and
objective values are shown in Table 5:

P(0)
G = {C1, C2, C3, C4, M1, M2}

Step 5: Generate the neighborhood population PN (k).
The populations P(k) and PG(k) form the union population

PU (k) = P(k)
∪ PG(k). This step uses the neighborhood

operator to generate the neighborhood population PN (k)

from the union populationPU (k). For the first iteration,PU (0)

includes 15 chromosomes, of which 9 are in P(0) and 6 are in
PG(0):

P(0)
U = P(0)

∪ P(0)
G = {EDD, ERD, R2, SPT, R1, R4,

R3, R5, LPT, C1, C2, C3, C4, M1, M2}

The neighborhood operator swaps adjacent sub-
chromosomes in each chromosome to generate
neighborhood chromosomes. Each chromosome in PU (0)

will have three neighborhood chromosomes. The best
chromosome will be selected to move into PN (0) to go
forward. Population PN (0) includes the best neighborhood
chromosomes, as shown in Table 6:

P(0)
N = {N1, N2, N3, N4, N5, N6, N7, N8, N9, N10,

N11, N12, N13, N14, N15}

FIGURE 1 | The Gantt chart by GATS model.
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TABLE 10 | The binary levels of the input factors.

Factors Levels

P 8 12
Pc 0.6 0.8
Pm 0.2 0.3

FIGURE 2 | The ANOVA of the binary experiment.

In PN (0), there are two chromosomes, N1 and N2, in the
tabu list; the rest are not.

Step 6: Generate the next population P(k+1).
The step uses the replacement operator to generate the

next population P(k+1) from the populations P(k) and PN (k).
The chromosomes from PN (k) will be added to the current
population P(k) to make the next population P(k+1), if they
are not in the current tabu list and their objective values
exceed an acceptable threshold, defined by the objective value
of the threshold chromosome. The threshold chromosome is
a chromosome in P(k) with position n defined by population
size P and threshold parameter k as follows:

n = P/k

With a population size of nine and a threshold parameter
of two chosen, the threshold chromosome is the fourth
chromosome of P(k) in the top-down ranking. In order
to keep the next population size constant, chromosomes
in P(k) with the lowest values are removed from the next
population. This step also updates the tabu list by adding the
chromosomes moved into the next population P(k+1).

In this iteration, the threshold chromosome is SPT, with
a threshold value of 16.34. Chromosomes N3, N4, and N12
move into, and R3, R5, and LPT move out of the population.
The chromosomes in the next population, P(1), are shown in
Table 7:

P(1)
= {EDD, N12, ERD, N3, N4, R2, SPT, R1, R4}

The tabu list is updated after iteration 1 as follows:

TL = {EDD, ERD, R2, SPT, R1, R4, R3, R5,

LPT, N3, N4, N12}

Step 7: Check the termination rule.
After iteration 1, EDD is again the best chromosome

with the best objective value of 9.41, appearing twice. The
termination rule is not satisfied, so iteration 2 is executed.
The results after 14 iterations are shown in Table 8.

From the 12th iteration to the 21st iteration, the best
objective value remains the same, the termination rule is
satisfied, and the algorithm ends. The scheduling result for
this run is as follows:

C = (413296857, 413297856, 142379856, 472319856),

T = 2.37(h)

Step 8: Run the algorithm a number of times to choose
the best scheduling result.

The algorithm is run 10 times with the results as shown in
Table 9.

The best scheduling result is found on the first run. The
scheduling sequence C and the objective value T are as
follows:

C = (423981756, 498132756, 982713546, 439782156),

T = 2.37(h).

FIGURE 3 | The values of parameters to give the minimum objective value.
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TABLE 11 | The multilevels of the input factors.

Factors Levels

P 11 12 13 14 15
Pc 0.5 0.6 0.7 0.8 0.9

FIGURE 4 | The ANOVA of the multilevels experiment.

The Gantt chart for the GATS model is shown in Figure 1.
The objective value according to the GATS model (2.37h)

is less than the objective value according to the LPT model
currently used (46.93h).

The GATS with DOE to solve the
FFSS problem

The parameters of the above GATS model were selected
empirically, so the results are not very good. Experimental
design is used to determine the model parameters. Firstly, a
binary experiment is conducted with the model parameters P,
Pc, and Pm chosen as the input factors and the total tardiness
time T chosen as the output factor. The levels of the input
factors are chosen as in Table 10.

Each combination of input factors is tested five times.
The total number of experiments is 40. The experimental

results are collected. From the data, Analysis of variance is
performed as in Figure 2.

From the above ANOVA table, with α of 0.05, the affected
factors are factors P and Pc. The values of parameters to give
the minimum objective value are shown in Figure 3.

P = 12, Pc = 0.8, Pm = 0.2

A further experiment is conducted with the two affected
factors chosen as the input factors and the total tardiness time
T chosen as the output factor. The mutation probability Pm
is kept at 0.2. The levels of the input factors are chosen as in
Table 11.

There are 25 combinations of input factors. Each
combination is experimented with four times. The total
number of experiments is 100. The experimental results are
collected. From the data, analysis of variance is performed as
in Figure 4.

From the ANOVA shown in Figure 4, with α of 0.05,
the most affected factor is population size P. The values of
parameters to give the minimum objective value are shown
in Figure 5.

P = 15, Pc = 0.9

The GATS model with DOE is run 10 times with the
parameters defined by the experiment as follows:

P = 15, Pc = 0.9, Pm = 0.2

The results of the GATS model with DOE are shown in
Table 12.

TABLE 12 | The results of the GATS with DOE after 10 runs.

Runs 1 2 3 4 5 6 7 8 9 10

T(h) 0.86 0.04 0.65 5.57 3.18 1.18 0.04 0 2.45 3.82

FIGURE 5 | The values of parameters must give the minimum objective value.
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FIGURE 6 | The Gantt chart for the GATS model with DOE.

The best scheduling result is found on the 8th run. The
scheduling sequence C and the objective value T are as
follows:

C = (394218756, 394127586, 342791856, 432198756),

T = 0(h).

The Gantt chart for the GATS model with DOE is shown
in Figure 6.

The objective value according to the GATS model with
DOE (0h) is less than the objective value according to the
GATS model without DOE (2.37h).

Conclusion

The GATS model has been used to solve the FFSS problem
with nine orders on four stations and three homogeneous
parallel machines. In the model, GA is used as the platform
to perform a global search of the solution space, and TS is
used to perform a local search to refine the solution found
by GA. The results show that the GATS model gives a better
objective value of tardiness time than the heuristic LPT
method being used.

Design of experiments has been used to optimize
the parameters of the GATS model. The results show
that the GATS model with DOE gives a better objective
value of tardiness time than the GATS model without
DOE. The GATS models without and with DOE
have been used to solve the FFSS problem with small
sizes. Future research will use the models to solve
real-world problems.
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