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Flow Shop Scheduling (FSS) Problems are examples of combinatorial optimization issues that are classified as 

NP-hard. Because of the NP-hard structure of FSS problems, it can be extremely challenging to find mathematical 

modeling methodologies that will result in an optimal solution for these problems. The Genetic Algorithm (GA), 

which is a metaheuristic approach, is one of the most important factors in the process of locating near-optimal 

answers to NP-hard optimization issues. In this research, a GA model for addressing an FSS problem was 

developed with the goal of lowering the overall weighted tardiness time and placing a constraint on the operation 

changeover time. When compared with the performance of the standard heuristics EDD, being used in the 

company under study, the GA model’s performance was shown to be superior. Based on the findings, it can 

be shown that the objective value was cut by 43%, going from 215.95 (h) to 123.07 (h). This demonstrates that the 

GA model is an effective strategy for addressing FSS problems. 
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1. Introduction 

The process of assigning resources to a set of activities 

so that they can be completed throughout a period of 

time is known as scheduling. The order or sequence in 

which a collection of jobs are to be processed by a 

number of machines in the most efficient manner can 

be determined via scheduling problems. In FSS problems, 

m distinct machines and n distinct jobs are considered; 

each job comprises m operations, and each operation 

demands a different machine; also, all of the tasks are 

processed in the same order; this is known as the 

processing order. 

The company studied is currently having problems with 

late orders, leading to low customer service level. After 

analysis, the root cause was found to be due to a bad 

scheduling method. The company is currently using the 

EDD heuristic method. Order tardiness times were quite 

high. The company wanted to improve its scheduling 

1 

methods with the objective of reducing order tardiness times, 

thereby improving on-time delivery rates, and enhancing 

customer service levels. 

The problem that needs to be handled is an FSS 

problem, and it is assumed that the orders are ready 

before the scheduling process begins. The overall weighted 

tardiness of orders needs to be reduced as much as possible 

in order to accomplish the objectives of the problem. 

The constraints are on the sequence of orders, on the 

sequence of operations in the orders, and on machine 

changeover time. 

In this paper, given the aforementioned assumptions, 

objectives, and constraints, a model of the problem is 

constructed, and a GA algorithm is developed to solve it. The 

GA algorithm will identify an appropriate solution based on 

the problem model, and then its efficacy will be determined 

by comparing that solution to the solution obtained by the 

currently used heuristic model. 
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2. Literature review and research 
methodology 

2.1. Flow shop scheduling FSS problems 

Flow shop scheduling problems consider different machines 

and different jobs. Each job consists of different operations 

and each operation requires a different machine and all 

the jobs are processed in the same processing order (1). 

Flow shop scheduling problems are NP-hard combinatorial 

optimization problems. For such problems, heuristics play a 

major role in searching for near-optimal solutions (2). 

O Etiler, B Toklu, M Atak, and J Wilson developed 

a genetic algorithm-based heuristic for the flow shop 

scheduling problem with makespan as the criterion (3). 

Complex GA algorithms have also been researched to 

solve the FFS problem effectively. Orhan Engin, Gülsad 

Ceran, and Mustafa K. Yilmaz had developed an efficient 

genetic algorithm for hybrid flow shop scheduling with 

multiprocessor task problems (4). 

Genetic algorithms are also combined with other 

algorithms to solve the FSS problem more effectively. Moch 

Saiful Umam, Mustafid Mustafid, and Suryono Suryono had 

combined the tabu search process with a genetic algorithm 

to solve the flow shop scheduling problem with the objective 

of minimizing makespan (5). Anna Burduk, Kamil Musiał, 

Joanna Kochańska, Dagmara Górnicka, and Anastasia 

Stetsenko had applied tabu search and genetic algorithm to 

solve production process scheduling problems and found 

that intelligent methods can find, in relatively short time, the 

solution that is close to the optimal and acceptable from the 

problem point of view (6). 

This paper researches and applies a simple GA algorithm 

to solve the FSS problem to get better results than those of 

the current EDD dispatching method. This model is an initial 

basic model that can be developed into more complex GA 

models, or models that combine GA with other algorithms to 

be able to solve FSS problems more effectively. 

 

2.2. Genetic algorithm 

In 1975, Holland was the first to introduce the concept of 

a genetic algorithm (GA), a form of artificial intelligence 

search that mimics natural processes like evolution and 

natural selection by using a set of instructions encoded in 

each individual’s chromosomes. It is an effective method for 

resolving optimization issues. 

In GA, the solution space is typically represented as 

a population of chromosomes, with each chromosome 

standing in for a possible solution. In this concept, strings 

represent chromosomes. A specific string format can be used 

to code the chromosomes. 

Each chromosome has an associated fitness value. The 

fitness function quantifies how close the solution comes 

to solving the problem. From the problem’s goal function, 

we can infer the fitness function. The first generation is 

determined by the number of chromosomes that are selected. 

Selection, crossover, mutation, and replacement are only few 

of the genetic operators used on the current generation’s 

chromosomes to produce the new generations. 

The algorithm takes a starting population and generates 

offspring that are, in theory, healthier and more robust than 

their forebears. This procedure is performed until a criterion 

for stopping the process is met. Each new chromosome 

represents a different answer at each generation. 

 

 

2.3. Research methodology 

The FSS problem is an example of an NP-hard problem 

with a substantial amount of potential solution space. The 

methodology, used in this research to solve the problem, 

includes 2 phases: 

– Phase A: Construct the model of the problem. 

– Phase B: Use GA model to solve the problem. 

 

In phase A, the model of the problem is formulated with 

the objective of minimizing the total weighted tardiness time 

and constraint on operation changeover time. 

To solve the issue in phase B, a GA model is utilized, which 

is determined by the model of the problem. The process for 

the GA is as follows: 

 
Step 1: Set the GA model’s initial conditions. 

Step 2: Create the first population P(0). Set k = 0. 

Step 3: Establish the elite population PE
(k). 

Step 4: Establish the genetic population PG
(k). 

Step 5: Develop the next population P(k + 1). 

Set k = k + 1. 

Step 6: Make sure that the termination rule has been 

followed. In the event that the answer is “No,” back to 

step 3. If the answer is “Yes,” then the cycle should be 

completed. 

Step 7: Run the algorithm a number of times to choose 

the best scheduling result. 

Step 1 setups the structure and parameters of the GA 

model, including the method of coding, the GA factors, and 

the termination rule. 

For coding, the orders are numbered, each gene is 

corresponding to an order, and each chromosome is a string 

of genes. The sequence of genes represents the sequence of 

order scheduled. For example, the chromosome format for 

a scheduling problem with 10 orders is as follows, the order 

number of order (where Gi is the order number of order i, 

i = 1 ÷ 10). 

C = [G1, G2, G3, G4, G5, G6, G7, G8, G9, G10] 
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FIGURE 1 | Precedence operation crossover (POX). 

 

 

FIGURE 2 | SWAP mutation method. 

 

The GA factors include fitness function, the population 

size, and the GA operators. The objective function of the 

problem is utilized to determine how the fitness function 

should be formulated. The objective value determines the 

degree to which one’s fitness level can be improved. The 

selection operator, the crossover operator, the mutation 

operator, and the replacement operator are all different types 

of GA operators. 

The rule of termination: After a predetermined number 

of repetitions in a row, the population’s best objective value 

Tbest does not become any better. 

Step 2 generates the first population P(0) from solution 

space, with the population size defined by step 1. This 

step also starts the algorithm by setting the iteration 

counting index k to 0. 

Step 3 uses the selection operator in order to produce 

an elite population PE
(k) from current population P(k). 

The fitness function is what the selection operator uses to 

determine which chromosomes from the current population 

should be included in the elite population. The higher 

the fitness value, the greater the probability that an 

individual will be chosen. 

Step 4 the elite population PE
(k) is used in conjunction 

with the crossover and mutation operators to produce the 

genetic population PG
(k). 

The PE
(0) chromosomes that are included in the crossover 

list Pc are chosen by the crossover operator, which takes into 

account the crossover probability. Then, using a crossover 

technique, we choose certain pairs of Pc chromosomes to 

transpose into a new set of chromosomes that will become 

part of PG
(k). 

The crossover method used in this research is POX 

(Precedence Operation Crossover). POX crosses over 2 parents 

P1 and P2 to make 2 children C1 and C2 as shown in 

Figure 1. 

With a given mutation probability, the mutation operator 

chooses chromosomes from PE
(0) to add to the mutation 

list Pm. To create the genetic population PG
(k), mutations 

 

 
FIGURE 3 | The production process. 

 

 

are then picked for each chromosome in Pm using a 

mutation technique. 

The mutation method used in this research is SWAP. 

SWAP mutates parent P to make child M as shown in 

Figure 2. 

Step 5 generates the next population P(k + 1) from the 

current population P(k) and the elite population PE
(k) by 

using replacement operator. If the fitness values of the 

chromosomes in PG
(k) are higher above an acceptable 

threshold, then they will be joined to the chromosomes in 

the current population, P(k), to produce the next population, 

P(k + 1). 

The value of the nth chromosome in the ranking of P(k) 

is used to determine the threshold for the ranking. With 

population size P, threshold value K, n is defined as follows: 

n = round 
P

 
K 

In order to maintain a stable population size, the 

chromosomes with the lowest values are eliminated from 

the population after an influx of newcomers. This step also 

increases the iteration counting index k by 1 to prepare for 

the next iteration, if any. 

Step 6 checks the termination rule. The algorithm usually 

terminates after a number of iterations if the objective 

function is not improved. If the termination rule is not met, 

https://doi.org/10.54646/bijomrp.2024.25
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TABLE 1 | The weight Wi, i = 1÷10, and the due date Di, i = 1÷10, of 

order i. 

 
i 

TABLE 3 | Changeover time (h) Sj, j = 1÷3. 
 

 

 
 

 
 
 

 
7 2.0 2.0 0.5 2.0 0.5 0.5 0.0 0.5 2.0 0.0 

8 2.0 2.0 0.5 2.0 2.0 2.0 0.5 0.0 0.0 0.0 

9 2.0 2.0 2.0 2.0 0.5 0.0 2.0 0.0 0.0 2.0 

10 2.0 2.0 0.5 2.0 0.5 0.0 0.0 0.0 2.0 0.0 
 

 

 

 

 

 

 

 

 

the algorithm returns to step 3 for the next iteration. If the 

termination rule is met, the iteration loop is stopped. One 

run has finished. 

Step 7 runs the algorithm a number of times to choose the 

best scheduling result among the runs. 

The research methodology of the GA model is shown in 

the following sections. 

 

 

3. The model of the flow shop 
scheduling problem 

The problem that needs to be solved is an FSS problem (2) 

with 10 orders, Oi, where i is an integer from 1 to 10, and 

scheduling on 4 machines, M1, M2, M3, and M4. Each order 

is comprised of three distinct pieces, labeled P1, P2, and 

P3, which are divided among four different machines in the 

manner shown in Figure 3. 

The weight Wi, i = 1÷10, and the due date Di, i = 1÷10, of 
order i are estimated in Table 1. 

The processing times Pij of order i, i = 1÷10, on operation 

TSi4 ≥ TEi1, 

TSi5 ≥ TEi2, 

TSi6 ≥ TEi3, 

TSi7 ≥ TEi5, 

TSi8 ≥ max(TEi4, TEi6, TEi7). 

The start time of order i at operation j, TSij, depends on the 

end time of the previous order i’, TEirj, and the changeover 

time between the orders on operation j. 

 

TSij = TCirj + Sj. 

The end time of order i on operation j, TEij, is determined 

by the start time and processing time of the order. 

 

TCij = TSij + Pij. 

The tardiness time of order i, Ti, is determined by the end 

time in the last operation and due time of the order. 

 

Ti = Max(0, TEi8 − Di). 

The objective function that minimizes the total weighted 

tardiness is defined as follows: 
Tbest = Min T, 

X 
 

The changeover times in hours on operation j, j = 4÷8 are 

equal to 0, Sj = 0, j = 4÷8. The changeover times in hours on 

operation j, j = 1÷3 are the same and depend on the current 

order i = 1÷10, and the next order, i’ = 1÷10, as shown in 

Table 3. 

The model is built up using the start time (TSij), the 

completion time (TEij) of order i at operation j, and the 

tardiness time (Ti) of order i as independent variables. 

The constraints on the sequence of operation on each 

order are as follows: 

The company is currently using the EDD dispatching 

method. The sequence of dispatching S and the value of the 

objective function T are as follows: 

 

S = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10); 

 

T = 215.95 (h). 

The Gantt Chart is as in Figure 4. 

j, j = 1÷8, are estimated in Table 2. T = Wi ∗ Ti (i = 1 : 11) 

J P1j P2j P3j P4j P5j P6j P7j P8j P9j P10j 

1 2.34 6.17 6.20 7.09 2.47 9.56 3.44 14.74 5.26 1.39 

2 2.25 0.94 7.05 3.22 1.07 5.26 1.81 7.49 5.26 0.66 

3 0.00 3.99 4.34 4.38 2.60 9.52 0.00 16.75 14.74 0.44 

4 2.63 1.33 1.08 9.00 2.60 12.56 1.32 17.54 16.52 1.29 

5 1.06 1.00 6.58 9.00 4.21 12.64 0.65 17.54 16.52 1.29 

6 0.00 8.33 6.58 3.60 3.95 12.64 0.00 13.33 15.79 0.40 

7 2.67 3.29 1.13 2.21 0.68 4.00 1.11 5.26 1.60 0.44 

8 4.08 3.31 3.42 12.00 3.95 6.12 2.21 8.22 5.26 1.32 

 

 
1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 
   

Wi 3.70 3.40 3.30 4.65 3.90 2.35 2.70 4.55 4.65 4.30 1 0.0 0.5 2.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

Di (h) 24 36 40 60 68 80 88 88 96 96 2 0.5 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0 

           3 2.0 0.0 0.0 2.0 0.5 2.0 0.5 0.5 2.0 0.5 

           4 0.0 0.0 2.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 

TABLE 2 | The processing time Pij of order i, i = 1÷10, on operation j. 
5 0.0 2.0 0.5 0.0 0.0 2.0 0.5 2.0 0.5 0.5

 
6 2.0 2.0 2.0 0.0 2.0 0.0 0.5 2.0 0.0 0.0 
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FIGURE 4 | The Gantt chart for the pilot problem by EDD dispatching method. 

 

TABLE 4 | The population size, and the GA operators. TABLE 5 | The initial population P(0) with fitness values. 

 
 
 
 
 
 
 
 
 
 
 

 

scheduling problem 

The previously mentioned FSS problem is an NP-hard 

problem, and the total number of possible solutions is 10!, 

which is equivalent to 3,628,800. The problem is solved by 

applying the GA model in the same steps as described in the 

section “2.3. Research methodology”. 

Step 1: Set the GA model’s initial conditions 

In this stage, GA model factors such as coding technique, 

GA parameters, and termination rule are set up. 

The method of coding: Each chromosome is a string of 

10 genes. Each gene corresponds to an order. The orders are 

numbered from 1 to 10. The sequence of genes represents the 

sequence of order scheduled. For example, the chromosome 

of EDD scheduling method is as follows: 

 

C = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

The GA factors include fitness function, the population 

size, and the GA operators. Here is how we characterize F, 

the fitness function: 

 

Fi = Tmax − Ti. 

 
 
 

 

TABLE 6 | The initial population P(0) with selection and cumulative 

probabilities. 
 

P(0) Fi Pi CPi 

EDD 1217.6710 0.1754 0.1754 

SPT 1210.7427 0.1744 0.3497 

LPT 1120.0530 0.1613 0.5110 

R1 1094.8691 0.1577 0.6687 

R2 986.0005 0.1420 0.8107 

R3 455.6409 0.0656 0.8763 

R4 315.4120 0.0454 0.9217 

R5 283.1211 0.0408 0.9625 

R6 260.3407 0.0375 1.0000 

R7 0.0000 0.0000 1.0000 

 
 

 

When Fi and Ti represent the fitness and objective 

values of chromosome i, respectively, Tmax refers to the 

highest possible value in the population. Table 4 provides an 

overview of the population size as well as the GA operators. 

Factors Values 
 

P(0) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Fi 

Population size P 10 EDD 1 2 3 4 5 6 7 8 9 10 1217.6710 

Crossover probability Pc 0.8; SPT 5 3 2 1 4 10 7 8 9 6 1210.7427 

Crossover method POX LPT 10 7 1 5 2 3 4 6 9 8 1120.0530 

Mutation probability Pm 0.2 R1 1 5 4 3 2 6 10 9 8 7 1094.8691 

Mutation method SWAP R2 5 3 4 1 2 10 8 9 6 7 986.0005 

Replacement method Acceptance threshold R3 6 8 7 9 10 1 3 2 4 5 455.6409 

Replacement threshold K 2 R4 10 6 9 7 8 5 1 4 2 3 315.4120 

  R5 8 10 7 9 6 3 5 2 4 1 283.1211 

  R6 7 8 10 9 6 2 3 5 4 1 260.3407 

4. The GA model for the flow shop R7 8 9 6 4 3 2 5 1 7 10 0.0000 

 

https://doi.org/10.54646/bijomrp.2024.25
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1 

P = 

 

TABLE 7 | The chromosomes selected into elite population PE
(0). 

 

RN 0.8190 0.7430 0.4142 0.2922 0.1047 0.3187 0.3009 0.0508 0.7966 0.9298 

PE
(0) R3 R2 LPT SPT EDD SPT SPT EDD R2 R5 

 

 
TABLE 8 | The chromosomes selected into the crossover list Pc. 

 

PE
(0) R3 R2 LPT SPT EDD SPT SPT EDD R2 R5 

RN 0.1132 0.8678 0.1592 0.4801 0.8902 0.7269 0.9400 0.3963 0.9875 0.8699 

Pc R3 – LPT SPT EDD SPT – EDD – – 

 
TABLE 9 | Population PC. denoted by the selection probability Pi. 

  Fi  

i P10 Fi
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The termination rule: After 10 iterations, there is no 

change in the population’s best objective value Tbest. 

Step 2: Create the first population P(0), set k = 0 

The initial population comprises 10 chromosomes. There 

are 3 chromosomes generated from 3 heuristic rules, EDD, 

SPT, and LPT. The remaining chromosomes R1, . . . , R7 are 

randomly generated. 

 

P(0) = {EDD, SPT, LPT, R1, R2, R3, R4, R5, R6, R7} 

The chromosomes in the initial population with their 

fitness values are shown in Table 5. 

Step 3: Establish the elite population PE
(k)

 

This stage involves selecting a subset of the population, 

P(k), to form the elite population, PE
(k). Based on its fitness 

value Fi, each member of the present population is given a 

certain chance of being included in the elite population PE
(k), 

The selection probabilities Pi and cumulative probabilities 

CPi of chromosomes in the initial population are calculated 

and shown in Table 6. 

Based on CPi, 10 random numbers RN are generated, the 

chromosomes selected into the population PE
(0) are as in 

Table 7. 

PE
(0) = {R3, R2, LPT, SPT, EDD, SPT, SPT, EDD, R2, R5} 

Step 4: Establish the genetic population PG
(k)

 

The newly created chromosome is a part of the genetic 

population known as PG
(k), which was produced by the 

crossover and mutation operators. 

A crossover probability of 0.8 is applied when selecting the 

chromosomes of PE
(0) to be included in the Pc list of potential 

crossover partners. After producing 10 random numbers RN, 

the set Pc is calculated, and the results are presented in 

Table 8. 

 

Pc = {R3, LPT, SPT, EDD, SPT, EDD} 

By using the POX approach, we choose to cross over 6 

pairs of chromosomes in population Pc, which results in the 

addition of 12 new chromosomes to population PC, as shown 

in Table 9. 

With a mutation probability of 0.2, the chromosomes of 

PE
(0) are as well chosen for inclusion in the mutation list Pm. 

Ten sets of random numbers (RN) are generated, and then 

Pm is calculated and displayed in Table 10. 

 

Pm = {EDD} 

 

TABLE 10 | The chromosomes selected into the mutation list Pm. 
 

PE
(0) R3 R2 LPT SPT EDD SPT SPT EDD R2 R5 

RN 0.7629 0.6461 0.2326 0.7462 0.1376 0.7797 0.4283 0.6789 0.2254 0.5371 

Pm – – – – EDD – – – – – 

PC G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Fi 

C1 2 1 3 4 5 10 7 8 9 6 1245.02 

C2 5 3 1 2 4 6 7 8 9 10 1156.34 

C3 10 1 5 2 3 6 7 4 9 8 1083.70 

C4 1 7 2 3 4 5 8 6 9 10 1080.84 

C5 7 9 10 1 3 6 2 8 4 5 603.65 

C6 6 8 1 2 3 4 5 7 9 10 553.08 

C7 10 7 1 5 4 2 3 9 8 6 1104.16 

C8 5 3 2 1 10 7 4 6 8 9 1069.54 

C9 8 7 10 1 3 2 4 5 9 6 806.04 

C10 6 5 3 9 2 1 4 10 7 8 611.50 

C11 6 8 7 5 10 1 3 2 9 4 617.67 

C12 10 7 1 9 2 3 4 6 8 5 941.70 

 



 7  10.54646/bijomrp.2024.25 
 

 

TABLE 11 | Population PM. 
 

PM  G1  G2  G3  G4  G5  G6  G7  G8  G9  G10 Fi 
 

M1 1 10 3 4 5 6 7 8 9 2 1030.69 
 

 

 

TABLE 12 | The next population P(1). 
 

P(1) G1  G2  G3  G4  G5  G6  G7  G8  G9  G10 Fi 
 

C1 2 1 3 4 5 10 7 8 9 6 1245.02 

EDD 1 2 3 4 5 6 7 8 9 10 1217.67 

SPT 5 3 2 1 4 10 7 8 9 6 1210.74 

C2 5 3 1 2 4 6 7 8 9 10 1156.34 

LPT 10 7 1 5 2 3 4 6 9 8 1120.05 

C7 10 7 1 5 4 2 3 9 8 6 1104.16 

R1 1 5 4 3 2 6 10 9 8 7 1094.8691 

C3 10 1 5 2 3 6 7 4 9 8 1083.70 

C4 1 7 2 3 4 5 8 6 9 10 1080.84 

C8 5 3 2 1 10 7 4 6 8 9 1069.54 

TABLE 13 | The results after 17 iterations. 
 

Iteration G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Tbest 

0 1 2 3 4 5 6 7 8 9 10 215.95 

1 2 1 3 4 5 10 7 8 9 6 188.60 

2 1 2 3 4 5 7 9 8 10 6 167.66 

3 1 2 3 4 5 7 9 8 10 6 167.66 

4 1 2 3 4 5 7 8 9 10 6 141.62 

5 1 2 3 4 5 10 8 7 9 6 129.87 

6 1 2 3 4 5 10 8 7 9 6 129.87 

7 1 3 2 4 5 8 7 10 9 6 126.43 

8 1 3 2 4 5 10 8 7 9 6 123.07 

9 1 3 2 4 5 10 8 7 9 6 123.07 

 1 3 2 4 5 10 8 7 9 6 123.07 

17 1 3 2 4 5 10 8 7 9 6 123.07 

 

 
TABLE 14 | The results after 10 runs. 

 

Run Tbest N 
 

 
1 123.07 17 

As can be seen in Table 11, the SWAP method is 2 138.35 16 

used to select for mutations in each chromosome in 3 143.03 16 

Pm, leading to the gain of 1 additional chromosome in 4 123.07 35 

population PM. 5 124.69 24 

A total of 13 additional chromosomes are added into the 6 129.87 14 

population PG
(0) as a result of crossover and mutation: 7 125.04 17 

 8 124.69 17 

(0) 
G = {C1, C2, C3, C4, C5, C6, C7, C8, 

C9, C10, C11, C12, M1} 

9 126.43 20 

10 123.07 19 
 

 

Step 5. Develop the next population P(k + 1)
 

The next population, P(k + 1), is formulated with the help 

of the replacement operator at this stage. If chromosomes 

from PG
(k) have fitness values higher than the threshold 

value, they will be included into the current population P(k) 

in order to generate the following population P(k + 1). With 

K = 2: 

n = 
P 

= 
10 

= 5 

 

population. Since the rule of termination has not been met, 

iteration 2 will be carried out. Table 13 displays the outcomes 

after 17 iterations. 

Seeing that from the 8th iteration to the 17th iteration, the 

best objective value remains the same, the termination rule is 

satisfied; hence, the algorithm ends. The scheduling result in 

this run is as follows: 

K 2 

The threshold value is the value of the 5th chromosome of 

P(k) in the ranking. For this iteration, the 5th chromosome of 

P(0) in the ranking is R2, and the threshold value is 986.0005. 

Chromosomes C1, C2, C3, C4, C7, C8, and M1 are selected 

for inclusion to P(1). 

In order to maintain the same total number of individuals 

in the P(1) population, the chromosomes M1, R7, R6, R5, R4, 

R3, R2, and R1 are eliminated. The next population, P(1), is 

calculated and displayed as in Table 12. 

Step 6. Make sure the termination rule is followed 

The best chromosome after the first iteration is C1, which 

has an objective value of 188.60 and appears only once in the 

S = (1, 3, 2, 4, 510, 8, 7, 9, 6), T = 123.07 (h). 

Step 7. Run the algorithm a number of times to choose 

the best scheduling result 

The algorithm is run 10 times with the results as shown in 

Table 14. 

The best scheduling result is found on the 1st run, 

with a number of iterations n of 17. The sequence of 

dispatching S, the values of the objective function are as 

follows: 

 

S = (1, 3, 2, 4, 510, 8, 7, 9, 6), 

P 

https://doi.org/10.54646/bijomrp.2024.25
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T = 123.07 (h). 

The objective value by the GA model, 123.07 (h) is smaller 

than the objective value of EDD models, 215.95 (h). 

 

 

5. Conclusion 

With the goal of minimizing the total weighted tardiness 

time and constraint on changeover time in operations, the 

Flow Shop Scheduling Problem with 10 orders on 4 machines 

has been created. The Flow Shop Scheduling Problem has 

been successfully resolved with the help of the GA model. 

Compared to the heuristic EDD technique, the results reveal 

that the GA model provides a lower objective value of 

weighted tardiness time. 

Nevertheless, given that the model’s factors, such as 

the population size, the crossover method and probability 

Pc, the mutation method and probability, as well as the 

method and parameter of the termination rule, are only 

determined empirically, the findings are not very impressive. 

In the upcoming study, the experimental design DOE will 

be utilized to identify the model parameters in order to 

produce more accurate results. Another area for research 

for the future is to apply the model to more extended 

order quantities. 

Moreover, GA, a global search method, if combines with 

another local search method like Tabu search, the result 

would be better in terms of quality, better objective value, and 

cost, smaller number of iterations. 
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