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Flow Shop Scheduling (FSS) Problems are examples of combinatorial optimization issues that are classified as
NP-hard. Because of the NP-hard structure of FSS problems, it can be extremely challenging to find mathematical
modeling methodologies that will result in an optimal solution for these problems. The Genetic Algorithm (GA),
which is a metaheuristic approach, is one of the most important factors in the process of locating near-optimal
answers to NP-hard optimization issues. In this research, a GA model for addressing an FSS problem was
developed with the goal of lowering the overall weighted tardiness time and placing a constraint on the operation
changeover time. When compared with the performance of the standard heuristics EDD, being used in the
company under study, the GA model’s performance was shown to be superior. Based on the findings, it can
be shown that the objective value was cut by 43%, going from 215.95 (h) to 123.07 (h). This demonstrates that the
GA model is an effective strategy for addressing FSS problems.
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1. Introduction

The process of assigning resources to a set of activities
so that they can be completed throughout a period of
time is known as scheduling. The order or sequence in
which a collection of jobs are to be processed by a
number of machines in the most efficient manner can
be determined via scheduling problems. In FSS problems,
m distinct machines and n distinct jobs are considered;
each job comprises m operations, and each operation
demands a different machine; also, all of the tasks are
processed in the same order; this is known as the
processing order.

The company studied is currently having problems with
late orders, leading to low customer service level. After
analysis, the root cause was found to be due to a bad
scheduling method. The company is currently using the
EDD heuristic method. Order tardiness times were quite
high. The company wanted to improve its scheduling

methods with the objective of reducing order tardiness times,
thereby improving on-time delivery rates, and enhancing
customer service levels.

The problem that needs to be handled is an FSS
problem, and it is assumed that the orders are ready
before the scheduling process begins. The overall weighted
tardiness of orders needs to be reduced as much as possible
in order to accomplish the objectives of the problem.
The constraints are on the sequence of orders, on the
sequence of operations in the orders, and on machine
changeover time.

In this paper, given the aforementioned assumptions,
objectives, and constraints, a model of the problem is
constructed, and a GA algorithm is developed to solve it. The
GA algorithm will identify an appropriate solution based on
the problem model, and then its efficacy will be determined
by comparing that solution to the solution obtained by the
currently used heuristic model.
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2. Literature review and research
methodology

2.1. Flow shop scheduling FSS problems

Flow shop scheduling problems consider different machines
and different jobs. Each job consists of different operations
and each operation requires a different machine and all
the jobs are processed in the same processing order (1).
Flow shop scheduling problems are NP-hard combinatorial
optimization problems. For such problems, heuristics play a
major role in searching for near-optimal solutions (2).

O Etiler, B Toklu, M Atak, and J Wilson developed
a genetic algorithm-based heuristic for the flow shop
scheduling problem with makespan as the criterion (3).
Complex GA algorithms have also been researched to
solve the FFS problem effectively. Orhan Engin, Gülsad
Ceran, and Mustafa K. Yilmaz had developed an efficient
genetic algorithm for hybrid flow shop scheduling with
multiprocessor task problems (4).

Genetic algorithms are also combined with other
algorithms to solve the FSS problem more effectively. Moch
Saiful Umam, Mustafid Mustafid, and Suryono Suryono had
combined the tabu search process with a genetic algorithm
to solve the flow shop scheduling problem with the objective
of minimizing makespan (5). Anna Burduk, Kamil Musiał,
Joanna Kochańska, Dagmara Górnicka, and Anastasia
Stetsenko had applied tabu search and genetic algorithm to
solve production process scheduling problems and found
that intelligent methods can find, in relatively short time, the
solution that is close to the optimal and acceptable from the
problem point of view (6).

This paper researches and applies a simple GA algorithm
to solve the FSS problem to get better results than those of
the current EDD dispatching method. This model is an initial
basic model that can be developed into more complex GA
models, or models that combine GA with other algorithms to
be able to solve FSS problems more effectively.

2.2. Genetic algorithm

In 1975, Holland was the first to introduce the concept of
a genetic algorithm (GA), a form of artificial intelligence
search that mimics natural processes like evolution and
natural selection by using a set of instructions encoded in
each individual’s chromosomes. It is an effective method for
resolving optimization issues.

In GA, the solution space is typically represented as
a population of chromosomes, with each chromosome
standing in for a possible solution. In this concept, strings
represent chromosomes. A specific string format can be used
to code the chromosomes.

Each chromosome has an associated fitness value. The
fitness function quantifies how close the solution comes

to solving the problem. From the problem’s goal function,
we can infer the fitness function. The first generation is
determined by the number of chromosomes that are selected.
Selection, crossover, mutation, and replacement are only few
of the genetic operators used on the current generation’s
chromosomes to produce the new generations.

The algorithm takes a starting population and generates
offspring that are, in theory, healthier and more robust than
their forebears. This procedure is performed until a criterion
for stopping the process is met. Each new chromosome
represents a different answer at each generation.

2.3. Research methodology

The FSS problem is an example of an NP-hard problem
with a substantial amount of potential solution space. The
methodology, used in this research to solve the problem,
includes 2 phases:

– Phase A: Construct the model of the problem.
– Phase B: Use GA model to solve the problem.

In phase A, the model of the problem is formulated with
the objective of minimizing the total weighted tardiness time
and constraint on operation changeover time.

To solve the issue in phase B, a GA model is utilized, which
is determined by the model of the problem. The process for
the GA is as follows:

Step 1: Set the GA model’s initial conditions.
Step 2: Create the first population P(0). Set k = 0.
Step 3: Establish the elite population PE

(k).
Step 4: Establish the genetic population PG

(k).
Step 5: Develop the next population P(k + 1).
Set k = k + 1.
Step 6: Make sure that the termination rule has been
followed. In the event that the answer is “No,” back to
step 3. If the answer is “Yes,” then the cycle should be
completed.
Step 7: Run the algorithm a number of times to choose
the best scheduling result.

Step 1 setups the structure and parameters of the GA
model, including the method of coding, the GA factors, and
the termination rule.

For coding, the orders are numbered, each gene is
corresponding to an order, and each chromosome is a string
of genes. The sequence of genes represents the sequence of
order scheduled. For example, the chromosome format for
a scheduling problem with 10 orders is as follows, the order
number of order (where Gi is the order number of order i,
i = 1÷ 10).

C = [G1, G2, G3, G4, G5, G6, G7, G8, G9, G10]
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FIGURE 1 | Precedence operation crossover (POX).

FIGURE 2 | SWAP mutation method.

The GA factors include fitness function, the population
size, and the GA operators. The objective function of the
problem is utilized to determine how the fitness function
should be formulated. The objective value determines the
degree to which one’s fitness level can be improved. The
selection operator, the crossover operator, the mutation
operator, and the replacement operator are all different types
of GA operators.

The rule of termination: After a predetermined number
of repetitions in a row, the population’s best objective value
Tbest does not become any better.

Step 2 generates the first population P(0) from solution
space, with the population size defined by step 1. This
step also starts the algorithm by setting the iteration
counting index k to 0.

Step 3 uses the selection operator in order to produce
an elite population PE

(k) from current population P(k).
The fitness function is what the selection operator uses to
determine which chromosomes from the current population
should be included in the elite population. The higher
the fitness value, the greater the probability that an
individual will be chosen.

Step 4 the elite population PE
(k) is used in conjunction

with the crossover and mutation operators to produce the
genetic population PG

(k).
The PE

(0) chromosomes that are included in the crossover
list Pc are chosen by the crossover operator, which takes into
account the crossover probability. Then, using a crossover
technique, we choose certain pairs of Pc chromosomes to
transpose into a new set of chromosomes that will become
part of PG

(k).
The crossover method used in this research is POX

(Precedence Operation Crossover). POX crosses over 2 parents
P1 and P2 to make 2 children C1 and C2 as shown in
Figure 1.

With a given mutation probability, the mutation operator
chooses chromosomes from PE

(0) to add to the mutation
list Pm. To create the genetic population PG

(k), mutations

FIGURE 3 | The production process.

are then picked for each chromosome in Pm using a
mutation technique.

The mutation method used in this research is SWAP.
SWAP mutates parent P to make child M as shown in
Figure 2.

Step 5 generates the next population P(k + 1) from the
current population P(k) and the elite population PE

(k) by
using replacement operator. If the fitness values of the
chromosomes in PG

(k) are higher above an acceptable
threshold, then they will be joined to the chromosomes in
the current population, P(k), to produce the next population,
P(k + 1).

The value of the nth chromosome in the ranking of P(k)

is used to determine the threshold for the ranking. With
population size P, threshold value K, n is defined as follows:

n = round
P
K

In order to maintain a stable population size, the
chromosomes with the lowest values are eliminated from
the population after an influx of newcomers. This step also
increases the iteration counting index k by 1 to prepare for
the next iteration, if any.

Step 6 checks the termination rule. The algorithm usually
terminates after a number of iterations if the objective
function is not improved. If the termination rule is not met,
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TABLE 1 | The weight Wi, i = 1÷10, and the due date Di, i = 1÷10, of
order i.

i 1 2 3 4 5 6 7 8 9 10
Wi 3.70 3.40 3.30 4.65 3.90 2.35 2.70 4.55 4.65 4.30
Di (h) 24 36 40 60 68 80 88 88 96 96

TABLE 2 | The processing time Pij of order i, i = 1÷10, on operation j.

J P1j P2j P3j P4j P5j P6j P7j P8j P9j P10j

1 2.34 6.17 6.20 7.09 2.47 9.56 3.44 14.74 5.26 1.39
2 2.25 0.94 7.05 3.22 1.07 5.26 1.81 7.49 5.26 0.66
3 0.00 3.99 4.34 4.38 2.60 9.52 0.00 16.75 14.74 0.44
4 2.63 1.33 1.08 9.00 2.60 12.56 1.32 17.54 16.52 1.29
5 1.06 1.00 6.58 9.00 4.21 12.64 0.65 17.54 16.52 1.29
6 0.00 8.33 6.58 3.60 3.95 12.64 0.00 13.33 15.79 0.40
7 2.67 3.29 1.13 2.21 0.68 4.00 1.11 5.26 1.60 0.44
8 4.08 3.31 3.42 12.00 3.95 6.12 2.21 8.22 5.26 1.32

the algorithm returns to step 3 for the next iteration. If the
termination rule is met, the iteration loop is stopped. One
run has finished.

Step 7 runs the algorithm a number of times to choose the
best scheduling result among the runs.

The research methodology of the GA model is shown in
the following sections.

3. The model of the flow shop
scheduling problem

The problem that needs to be solved is an FSS problem (2)
with 10 orders, Oi, where i is an integer from 1 to 10, and
scheduling on 4 machines, M1, M2, M3, and M4. Each order
is comprised of three distinct pieces, labeled P1, P2, and
P3, which are divided among four different machines in the
manner shown in Figure 3.

The weight Wi, i = 1÷10, and the due date Di, i = 1÷10, of
order i are estimated in Table 1.

The processing times Pij of order i, i = 1÷10, on operation
j, j = 1÷8, are estimated in Table 2.

The changeover times in hours on operation j, j = 4÷8 are
equal to 0, Sj = 0, j = 4÷8. The changeover times in hours on
operation j, j = 1÷3 are the same and depend on the current
order i = 1÷10, and the next order, i’ = 1÷10, as shown in
Table 3.

The model is built up using the start time (TSij), the
completion time (TEij) of order i at operation j, and the
tardiness time (Ti) of order i as independent variables.

The constraints on the sequence of operation on each
order are as follows:

TABLE 3 | Changeover time (h) Sj, j = 1÷3.

1 2 3 4 5 6 7 8 9 10

1 0.0 0.5 2.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0
2 0.5 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0
3 2.0 0.0 0.0 2.0 0.5 2.0 0.5 0.5 2.0 0.5
4 0.0 0.0 2.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0
5 0.0 2.0 0.5 0.0 0.0 2.0 0.5 2.0 0.5 0.5
6 2.0 2.0 2.0 0.0 2.0 0.0 0.5 2.0 0.0 0.0
7 2.0 2.0 0.5 2.0 0.5 0.5 0.0 0.5 2.0 0.0
8 2.0 2.0 0.5 2.0 2.0 2.0 0.5 0.0 0.0 0.0
9 2.0 2.0 2.0 2.0 0.5 0.0 2.0 0.0 0.0 2.0
10 2.0 2.0 0.5 2.0 0.5 0.0 0.0 0.0 2.0 0.0

TSi4 ≥ TEi1,

TSi5 ≥ TEi2,

TSi6 ≥ TEi3,

TSi7 ≥ TEi5,

TSi8 ≥ max(TEi4, TEi6, TEi7).

The start time of order i at operation j, TSij, depends on the
end time of the previous order i’, TEi′j, and the changeover
time between the orders on operation j.

TSij = TCi′j + Sj.

The end time of order i on operation j, TEij, is determined
by the start time and processing time of the order.

TCij = TSij + Pij.

The tardiness time of order i, Ti, is determined by the end
time in the last operation and due time of the order.

Ti = Max(0, TEi8 − Di).

The objective function that minimizes the total weighted
tardiness is defined as follows:

Tbest = Min T,

T =
∑

Wi ∗ Ti (i = 1 : 11)

The company is currently using the EDD dispatching
method. The sequence of dispatching S and the value of the
objective function T are as follows:

S = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

T = 215.95 (h).

The Gantt Chart is as in Figure 4.
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FIGURE 4 | The Gantt chart for the pilot problem by EDD dispatching method.

TABLE 4 | The population size, and the GA operators.

Factors Values

Population size P 10
Crossover probability Pc 0.8;
Crossover method POX
Mutation probability Pm 0.2
Mutation method SWAP
Replacement method Acceptance threshold
Replacement threshold K 2

4. The GA model for the flow shop
scheduling problem

The previously mentioned FSS problem is an NP-hard
problem, and the total number of possible solutions is 10!,
which is equivalent to 3,628,800. The problem is solved by
applying the GA model in the same steps as described in the
section “2.3. Research methodology”.

Step 1: Set the GA model’s initial conditions
In this stage, GA model factors such as coding technique,

GA parameters, and termination rule are set up.
The method of coding: Each chromosome is a string of

10 genes. Each gene corresponds to an order. The orders are
numbered from 1 to 10. The sequence of genes represents the
sequence of order scheduled. For example, the chromosome
of EDD scheduling method is as follows:

C = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

The GA factors include fitness function, the population
size, and the GA operators. Here is how we characterize F,
the fitness function:

Fi = Tmax − Ti.

TABLE 5 | The initial population P(0) with fitness values.

P(0) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Fi

EDD 1 2 3 4 5 6 7 8 9 10 1217.6710
SPT 5 3 2 1 4 10 7 8 9 6 1210.7427
LPT 10 7 1 5 2 3 4 6 9 8 1120.0530
R1 1 5 4 3 2 6 10 9 8 7 1094.8691
R2 5 3 4 1 2 10 8 9 6 7 986.0005
R3 6 8 7 9 10 1 3 2 4 5 455.6409
R4 10 6 9 7 8 5 1 4 2 3 315.4120
R5 8 10 7 9 6 3 5 2 4 1 283.1211
R6 7 8 10 9 6 2 3 5 4 1 260.3407
R7 8 9 6 4 3 2 5 1 7 10 0.0000

TABLE 6 | The initial population P(0) with selection and cumulative
probabilities.

P(0) Fi Pi CPi

EDD 1217.6710 0.1754 0.1754
SPT 1210.7427 0.1744 0.3497
LPT 1120.0530 0.1613 0.5110
R1 1094.8691 0.1577 0.6687
R2 986.0005 0.1420 0.8107
R3 455.6409 0.0656 0.8763
R4 315.4120 0.0454 0.9217
R5 283.1211 0.0408 0.9625
R6 260.3407 0.0375 1.0000
R7 0.0000 0.0000 1.0000

When Fi and Ti represent the fitness and objective
values of chromosome i, respectively, Tmax refers to the
highest possible value in the population. Table 4 provides an
overview of the population size as well as the GA operators.
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TABLE 7 | The chromosomes selected into elite population PE
(0).

RN 0.8190 0.7430 0.4142 0.2922 0.1047 0.3187 0.3009 0.0508 0.7966 0.9298
PE

(0) R3 R2 LPT SPT EDD SPT SPT EDD R2 R5

TABLE 8 | The chromosomes selected into the crossover list Pc.

PE
(0) R3 R2 LPT SPT EDD SPT SPT EDD R2 R5

RN 0.1132 0.8678 0.1592 0.4801 0.8902 0.7269 0.9400 0.3963 0.9875 0.8699
Pc R3 – LPT SPT EDD SPT – EDD – –

TABLE 9 | Population PC.

PC G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Fi

C1 2 1 3 4 5 10 7 8 9 6 1245.02
C2 5 3 1 2 4 6 7 8 9 10 1156.34
C3 10 1 5 2 3 6 7 4 9 8 1083.70
C4 1 7 2 3 4 5 8 6 9 10 1080.84
C5 7 9 10 1 3 6 2 8 4 5 603.65
C6 6 8 1 2 3 4 5 7 9 10 553.08
C7 10 7 1 5 4 2 3 9 8 6 1104.16
C8 5 3 2 1 10 7 4 6 8 9 1069.54
C9 8 7 10 1 3 2 4 5 9 6 806.04
C10 6 5 3 9 2 1 4 10 7 8 611.50
C11 6 8 7 5 10 1 3 2 9 4 617.67
C12 10 7 1 9 2 3 4 6 8 5 941.70

The termination rule: After 10 iterations, there is no
change in the population’s best objective value Tbest.

Step 2: Create the first population P(0), set k = 0
The initial population comprises 10 chromosomes. There

are 3 chromosomes generated from 3 heuristic rules, EDD,
SPT, and LPT. The remaining chromosomes R1, . . . , R7 are
randomly generated.

P(0)
= {EDD, SPT, LPT, R1, R2, R3, R4, R5, R6, R7}

The chromosomes in the initial population with their
fitness values are shown in Table 5.

Step 3: Establish the elite population PE
(k)

This stage involves selecting a subset of the population,
P(k), to form the elite population, PE

(k). Based on its fitness
value Fi, each member of the present population is given a
certain chance of being included in the elite population PE

(k),

denoted by the selection probability Pi.

Pi =
Fi∑10
1 Fi

The selection probabilities Pi and cumulative probabilities
CPi of chromosomes in the initial population are calculated
and shown in Table 6.

Based on CPi, 10 random numbers RN are generated, the
chromosomes selected into the population PE

(0) are as in
Table 7.

PE
(0)
= {R3, R2, LPT, SPT, EDD, SPT, SPT, EDD, R2, R5}

Step 4: Establish the genetic population PG
(k)

The newly created chromosome is a part of the genetic
population known as PG

(k), which was produced by the
crossover and mutation operators.

A crossover probability of 0.8 is applied when selecting the
chromosomes of PE

(0) to be included in the Pc list of potential
crossover partners. After producing 10 random numbers RN,
the set Pc is calculated, and the results are presented in
Table 8.

Pc = {R3, LPT, SPT, EDD, SPT, EDD}

By using the POX approach, we choose to cross over 6
pairs of chromosomes in population Pc, which results in the
addition of 12 new chromosomes to population PC, as shown
in Table 9.

With a mutation probability of 0.2, the chromosomes of
PE

(0) are as well chosen for inclusion in the mutation list Pm.
Ten sets of random numbers (RN) are generated, and then
Pm is calculated and displayed in Table 10.

Pm = {EDD}

TABLE 10 | The chromosomes selected into the mutation list Pm.

PE
(0) R3 R2 LPT SPT EDD SPT SPT EDD R2 R5

RN 0.7629 0.6461 0.2326 0.7462 0.1376 0.7797 0.4283 0.6789 0.2254 0.5371
Pm – – – – EDD – – – – –
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TABLE 11 | Population PM.

PM G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Fi

M1 1 10 3 4 5 6 7 8 9 2 1030.69

TABLE 12 | The next population P(1).

P(1) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Fi

C1 2 1 3 4 5 10 7 8 9 6 1245.02

EDD 1 2 3 4 5 6 7 8 9 10 1217.67

SPT 5 3 2 1 4 10 7 8 9 6 1210.74

C2 5 3 1 2 4 6 7 8 9 10 1156.34

LPT 10 7 1 5 2 3 4 6 9 8 1120.05

C7 10 7 1 5 4 2 3 9 8 6 1104.16

R1 1 5 4 3 2 6 10 9 8 7 1094.8691

C3 10 1 5 2 3 6 7 4 9 8 1083.70

C4 1 7 2 3 4 5 8 6 9 10 1080.84

C8 5 3 2 1 10 7 4 6 8 9 1069.54

As can be seen in Table 11, the SWAP method is
used to select for mutations in each chromosome in
Pm, leading to the gain of 1 additional chromosome in
population PM.

A total of 13 additional chromosomes are added into the
population PG

(0) as a result of crossover and mutation:

P(0)
G = {C1, C2, C3, C4, C5, C6, C7, C8,

C9, C10, C11, C12, M1}

Step 5. Develop the next population P(k + 1)

The next population, P(k + 1), is formulated with the help
of the replacement operator at this stage. If chromosomes
from PG

(k) have fitness values higher than the threshold
value, they will be included into the current population P(k)

in order to generate the following population P(k + 1). With
K = 2:

n =
P
K
=

10
2
= 5

The threshold value is the value of the 5th chromosome of
P(k) in the ranking. For this iteration, the 5th chromosome of
P(0) in the ranking is R2, and the threshold value is 986.0005.
Chromosomes C1, C2, C3, C4, C7, C8, and M1 are selected
for inclusion to P(1).

In order to maintain the same total number of individuals
in the P(1) population, the chromosomes M1, R7, R6, R5, R4,
R3, R2, and R1 are eliminated. The next population, P(1), is
calculated and displayed as in Table 12.

Step 6. Make sure the termination rule is followed
The best chromosome after the first iteration is C1, which

has an objective value of 188.60 and appears only once in the

TABLE 13 | The results after 17 iterations.

Iteration G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Tbest

0 1 2 3 4 5 6 7 8 9 10 215.95

1 2 1 3 4 5 10 7 8 9 6 188.60

2 1 2 3 4 5 7 9 8 10 6 167.66

3 1 2 3 4 5 7 9 8 10 6 167.66

4 1 2 3 4 5 7 8 9 10 6 141.62

5 1 2 3 4 5 10 8 7 9 6 129.87

6 1 2 3 4 5 10 8 7 9 6 129.87

7 1 3 2 4 5 8 7 10 9 6 126.43

8 1 3 2 4 5 10 8 7 9 6 123.07

9 1 3 2 4 5 10 8 7 9 6 123.07

1 3 2 4 5 10 8 7 9 6 123.07

17 1 3 2 4 5 10 8 7 9 6 123.07

TABLE 14 | The results after 10 runs.

Run Tbest N

1 123.07 17

2 138.35 16

3 143.03 16

4 123.07 35

5 124.69 24

6 129.87 14

7 125.04 17

8 124.69 17

9 126.43 20

10 123.07 19

population. Since the rule of termination has not been met,
iteration 2 will be carried out. Table 13 displays the outcomes
after 17 iterations.

Seeing that from the 8th iteration to the 17th iteration, the
best objective value remains the same, the termination rule is
satisfied; hence, the algorithm ends. The scheduling result in
this run is as follows:

S = (1, 3, 2, 4, 510, 8, 7, 9, 6), T = 123.07 (h).

Step 7. Run the algorithm a number of times to choose
the best scheduling result

The algorithm is run 10 times with the results as shown in
Table 14.

The best scheduling result is found on the 1st run,
with a number of iterations n of 17. The sequence of
dispatching S, the values of the objective function are as
follows:

S = (1, 3, 2, 4, 510, 8, 7, 9, 6),

https://doi.org/10.54646/bijomrp.2024.25
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T = 123.07 (h).

The objective value by the GA model, 123.07 (h) is smaller
than the objective value of EDD models, 215.95 (h).

5. Conclusion

With the goal of minimizing the total weighted tardiness
time and constraint on changeover time in operations, the
Flow Shop Scheduling Problem with 10 orders on 4 machines
has been created. The Flow Shop Scheduling Problem has
been successfully resolved with the help of the GA model.
Compared to the heuristic EDD technique, the results reveal
that the GA model provides a lower objective value of
weighted tardiness time.

Nevertheless, given that the model’s factors, such as
the population size, the crossover method and probability
Pc, the mutation method and probability, as well as the
method and parameter of the termination rule, are only
determined empirically, the findings are not very impressive.
In the upcoming study, the experimental design DOE will
be utilized to identify the model parameters in order to
produce more accurate results. Another area for research
for the future is to apply the model to more extended
order quantities.

Moreover, GA, a global search method, if combines with
another local search method like Tabu search, the result
would be better in terms of quality, better objective value, and
cost, smaller number of iterations.
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