
BOHR International Journal of Smart Computing
and Information Technology

2020, Vol. 1, No. 1, pp. 18–22
DOI: 10.54646/bijscit.2020.03

www.bohrpub.com

METHODS

A practical fault-tolerance approach in cloud computing
using support vector machine

Gajendra Sharma* and Praynita Karki

Department of Computer Science and Engineering, Kathmandu University, Kavre, Nepal

*Correspondence:
Gajendra Sharma,
gajendra.sharma@ku.edu.np

Received: 05 March 2020; Accepted: 24 March 2020; Published: 14 April 2020

Fault tolerance is an important issue in the field of cloud computing which, is concerned with the techniques or
mechanisms needed to enable a system to tolerate the faults that it may encounter during its functioning. Fault
tolerance policies can be categorized into three categories, viz., proactive, reactive and adaptive. By providing a
systematic solution, the loss can be minimized and to ensure the availability and reliability of the critical services.
The purpose and scope of this study is to recommend support vector machine, a supervised machine learning
algorithm to proactively monitor the fault so as to increase the availability and reliability by combining the strength
of machine learning algorithms with cloud computing.

Keywords: cloud computing, fault tolerance, proactive, support vector machine

1. Introduction

Cloud is a widely adopted technology in the industry. It is
a style of computing where its end users are provided with a
service through the internet using different models and layers
of abstraction on a pay-per- use basis. The services provided
by cloud computing have been divided as follows:

(a) Software-as-a-Service

(b) Platform-as-a-service

(c) Infrastructure-as-a-Service

With the increasing maturity of cloud computing, there
is also an increase in research regarding the issues such as
fault tolerance, workflow scheduling, workflow management,
and security. Fault tolerance is one of the key factors that
may be encountered in several communication and computer
networks (3, 4). It is related to the entire set of techniques
required to enable a system to tolerate software faults. A fault
is a defect or flaw that occurs in some hardware or software
component. In the traditional software fault classification,
the fault is divided into hardware faults and software faults.
In cloud computing systems, the hardware and software

faults are further classified. The general hierarchy of the fault
classification is shown in Figure 1.

The main concern of fault tolerance is to assure
reliability and availability of sensitive services and application
execution by reducing the failure influence on the system
as well as application execution (5, 6). The fault should be
anticipated and carefully handled. As such, the fault tolerance
technique is to predict failures and take suitable action
before failures occur.

1.1. Fault-tolerance techniques

Depending upon when to apply the fault tolerance
techniques, fault tolerance has been classified as follows
(7):

Proactive fault tolerance
This is an important technique, which predicts the

fault and eliminates recovery from faults and failures by
substituting the alleged component. It is able to detect the
problem before it arises. This is a perception that prevents
compute node failures from running parallel applications by
pre-emptively migrating parts of an application.

18

www.bohrpub.com
https://doi.org/10.54646/bijscit.2020.03
https://www.bohrpub.com
https://creativecommons.org/licenses/by-nc-nd/4.0/


10.54646/bijscit.2020.03 19

FIGURE 1 | Classification of fault sources. Source: (1).

Reactive fault tolerance
This mechanism enables us to reduce the effort of

failures when they take place. The reactive fault-tolerance
technique facilitates the system’s more robust or on-demand
fault tolerance.

Adaptive fault tolerance
The fault-tolerance of an application depends on its

existing position and the range of control inputs that can
be applied efficiently. Therefore, in adaptive fault tolerance,
entire procedures are performed automatically as per the
condition. It can guarantee reliability of critical modules
under resource constraints and temporal constraints by
allocating redundancy to less critical modules. It can be
affordable by minimizing resource requirements.

1.2. Objectives

In paper, we aim to develop a systematic solution to
improve the predictability of the fault-tolerant system in
cloud computing environment using the machine learning
approach which has been proved to be a well-adapted model
on different domains.

1.3. Statement of the problem

Using the reactive fault-tolerant technique increases the
clock execution time of the system. While rule-based fault
detection may underfit the problem, model-based system
are generally complex and computationally intensive, which
requires a large amount of skilled work to develop a model
for a particular system.

A systematic solution is required to improve the
observability of the system. A machine learning algorithm,
such as a support vector machine may be a well-efficient
solution to solve this particular issue.

The paper is organized as follows: Section “2. Related
Works” presents the related works where the various
existing techniques have been pointed out as well as a
comparison chart is provided to provide an analytical
view. Section “3. Framework” introduces the proposed

proactive fault tolerance framework; Section “4. Method
Development” demonstrates how the proposed technique
works in detail; and the last section concludes the paper and
discusses future work.

2. Related works

Various fault tolerances are currently prevalent in clouds (7–
9).

2.1. Check pointing

In check pointing, after making a change in system, a
checkpoint is created. Whenever a task fails, the job is
restarted from the recently added checkpoint.

2.2. Job migration

If the job cannot be executed on a particular machine, it is
migrated to another machine where it can be continued.

2.3. Replication

It permits several copies of tasks to run on different
resources for their effective implementation and to receive
the expected result.

2.4. Self-healing

Different instances of an application are allowed to run
on virtual machines and the failure of instances is
handled repeatedly.

2.5. Safety-bag checks

The command does not meet the safety properties and is
likely to be vulnerable.

https://doi.org/10.54646/bijscit.2020.03


20 Sharma and Karki

2.6. S-guard

This is less turbulent than normal stream processing and is
based on rollback recovery.

2.7. Retry

This retires the failed task on the identical resource, which
was implemented repeatedly.

2.8. Task resubmission

The task is resubmitted either to a similar or different
resource for execution whenever a failed task is detected.

2.9. Timing check

This technique, with critical function, can be
performed by a watch dog.

2.10. Rescue workflow

It enables the workflow to continue until it becomes
unimaginable to move forward without catering to
the failed task.

2.11. Software rejuvenation

It allows frequent reboots of the system. It assists the system
with a clean start and a fresh start.

2.12. Pre-emptive migration

This is regularly monitored and analyzed using a feedback-
loop control appliance.

2.13. Masking

A new state is recognized as a transformed state after the
employment of error recovery. If this process is applied
thoroughly in the absence of effective error provision, the
user is error masking.

2.14. Reconfiguration

A faulty element from the system is removed.

2.15. Resource co-allocation

A resource is allocated for execution of task.

2.16. User-specific exception handling

User defines the treatment for a task on its failure.
Based upon these techniques, a number of models is

implemented. Table 1 summarizes different models based on
protection against fault and procedure.

3. Framework

A general framework for a fault-tolerant system is given
hereunder, which consist of different modules with different
special tasks:

3.1. Node-monitoring module

It is equipped with the lm-sensors, which are used to evaluate
the system, affecting parameters that are used for forecasting
as attributes along with the prediction model that has been
purposed in this study.

Node-monitoring module monitors the following:

(a) Central processing unit temperature

(b) Fan speed

(c) Memory consumption

(d) MIPS usage

(e) Response time

(f) Average rate of node load

3.2. Failure predictor

A failure predictor module is run in each node.
It uses the model trained using the support vector
machine algorithm to predict failure. The model is
trained by using the logs captured in the past and
with some seed values. The parameters captured by
the node-monitoring modules are used as input by
the model, which is used for predictions (Figure 2)
(10, 11).

3.3. Proactive fault tolerance policy

The objective of this module is to decrease the influence of
failure of the execution. The policies that will be implemented
by the proposed architecture are as follows:



10.54646/bijscit.2020.03 21

TABLE 1 | Comparison among various models based on protection against the type of fault, and procedure (2).

Model nos. Model names Protection
against type of
faulttype of fault

Applied procedure to tolerate the fault

M1 AFTRC Reliability 1. Delete node depending on their reliability. 2.Back word recovery
with the help of check pointing

M2 LLFT Crash-cost,
trimming fault

Replication

M3 FTWS Dead line of work
flow

Replication and resubmission of jobs

M4 FTM Reliability,
availability,
on-demand
service

Replication users application and in the case of replica failure use
algorithm like gossip-based protocol.

M5 CANDY Availability 1. It assembles the model components generated from IBD and
STM according to allocation notation. 2. Then activity SNR is
synchronized to system SRN by identifying the relationship
between action in activity SNR and state transition in system SRN.

M6 VEGA-WARDEN Usability, security,
scaling

1. Two-layer authentication and standard technical solution for the
application.

M7 FT-CLOUD Reliability, crash,
and value fault

1. Significant component is determined based on the ranking. 2.
Optimal ft technique is determined.

M8 MAGI-CUBE Performance,
reliability, low
storage cost

1. Source file is encoded and then splits to save as a cluster. 2. File
recovery procedure is triggered as the original file is lost.

FIGURE 2 | Framework for proactive fault-tolerance system.

(a) Detect the addition node

(b) Leave the unhealthy node

(c) Set the alarm to inform the administrator to take an
action

The log is maintained by noting the incident of
happening of fault.

3.4. Controller module

The controller module is the one that implements the policies
listed earlier. In every node, a controller module is installed.
This node is responsible for the action to be performed by
the node that is about to fail (12). Once the fault in the
system is predicted by the model, the controller module takes
an action based upon the policies and records the incident
in the log table.

https://doi.org/10.54646/bijscit.2020.03


22 Sharma and Karki

4. Method development

The proposed system acts on the following two steps:
(a) Capturing data
Data sensed through the lm-sensor are captured. These

data are further used as an input.
(b) Monitoring system
Monitoring task is performed by the failure

predictor module. This module is built by using
support vector machine.

4.1. Support vector machine

Support vector machine are the one of the well-known
supervised approaches. This is usually used for classification
purposes. The support vector machine divides the data
provided by the hyperplane. Using the support vector model
involves the following two phases:

4.2. Training phase

The supervised learning support vector machine must first be
trained. Different instances are captured from the log table
using seed values and are labeled into two classes:

(a) Normal and
(b) Fault
These instances are further used for training the model.

Once the model is trained, it is tested using different testing
methods, such as the cross-validation test. Optimal Hyper
Plane separating Fault and Normal.

4.3. Deployment phase

The trained and tested model is implemented and used
for the purpose of prediction. The model takes the data
captured in step (a) and then predicts the class for the
data. If the predicted data class is found to be fault,
the alarm is set.

4.4. Handling the predicted fault

Once the occurrence of a fault is predicted, the controller
module takes an appropriate action based upon the policies
set and maintains the log.

Conclusion

Fault tolerance is a popular research domain in security and
networking, including cloud computing. Fault tolerance is
a significant issue that requires maintenance the stability of
the system. Early detection of the fault helps to minimize the
risk associated with the fault. A machine learning algorithm
has been found to be a milestone for the purpose of
prediction. The power of machine learning algorithms like
support vector machine can be implemented in the cloud. In
this paper, a conceptual approach to implementing support
vector machines for proactive fault detection is discussed.
This task can be further improved by performing the
experiment and comparing it with other machine learning
algorithms like Naive Bayes and Logistic Regression. It can
also be tweaked by using different parameters.

References

1. Jiang Y, Huang J, Ding J, Liu Y. Method of fault detection in cloud
computing systems. Int J Grid Distrib Comp. (2014) 7:205–12.

2. Egwutuoha P, Chen S, Levy D, Selic B, Calvo R. A Proactive Fault
Tolerance Approach to High Performance Computing (HPC) in the
Cloud. Proceedings of the Second International Conference on Cloud and
Green Computing. Xiangtan (2012).

3. Bala A, Chana I. Fault tolerance-challenges, techniques and
implementation in cloud computing. IJCSI Int J Comp Sci. (2012)
9:11–7.

4. Laprie J-C. Dependable computing and fault tolerance: concepts and
terminology. Pasadena, CA: IEEE (1995).

5. Gao Y, Gupta SK, Wang Y, Pedram M. An Energy-Aware Fault Tolerant
Scheduling Framework for Soft Error Resilient Cloud Computing Systems.
Los Angeles, CA: University of Southern California (2014).

6. Meshram D, Sambare A, Zade S. Fault tolerance model for reliable cloud
computing. Int J Recent Innov Trends Comp Commun. (2013) 1:7.

7. Guo Y, Wall J, Li J, West S. A Machine Learning Approach for Fault
Detection in Multivariable Systems. Peachtree Corners: ASHRAE (2011).

8. Patra PK, Singh H, Singh G. Fault tolerance techniques and comparative
implementation in cloud computing (0975-8887). Int J Comput Applic.
(2013) 64:37–41.

9. Kaur R, Mahajan M. Fault Tolerance in Cloud Computing. Pasadena, CA:
IEEE (2015).

10. Zhao W, Melliar-Smith P, Moser L. Fault Tolerance Middle ware for
Cloud Computing. Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing. Pasadena, CA (2010).

11. Poola D, Ramamohanarao K, Buyya R. Fault-Tolerant Work flow
Scheduling Using Spot Instances on Clouds. Proceedings of the ICCS
2014, 14th International Conference on Computational Science. London
(2014).

12. Jiang Y, Huang J, Ding J, Yingli L. Method of Fault Detection in Cloud
Computing Systems. Proceedings of the International Journal of Grid
Distribution Computing. Daejon (2014).


	A practical fault-tolerance approach in cloud computing using support vector machine
	1. Introduction
	1.1. Fault-tolerance techniques
	1.2. Objectives
	1.3. Statement of the problem

	2. Related works
	2.1. Check pointing
	2.2. Job migration
	2.3. Replication
	2.4. Self-healing
	2.5. Safety-bag checks
	2.6. S-guard
	2.7. Retry
	2.8. Task resubmission
	2.9. Timing check
	2.10. Rescue workflow
	2.11. Software rejuvenation
	2.12. Pre-emptive migration
	2.13. Masking
	2.14. Reconfiguration
	2.15. Resource co-allocation
	2.16. User-specific exception handling

	3. Framework
	3.1. Node-monitoring module
	3.2. Failure predictor
	3.3. Proactive fault tolerance policy
	3.4. Controller module

	4. Method development
	4.1. Support vector machine
	4.2. Training phase
	4.3. Deployment phase
	4.4. Handling the predicted fault

	Conclusion
	References


