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In the frequency domain, convolutive mixes with blind source separation can be successfully resolved. But the
permutation issue in frequency-domain blind source separation needs to be resolved. We investigated the impact
of frequency space and separation performance at each frequency bin on the amplitude correlation permutation
algorithm with the goal of addressing the permutation ambiguity problem in frequency-domain blind source
separation of convolutive mixtures, and we proposed an enhanced permutation algorithm. The improved algorithm
uses spacing influence weight and performance influence weight to control the influence of the frequency bins
sorted in the neighborhood on the frequency bins unsorted. Experiments have shown that the two influence
weights are effective. Finally, blind source separation experiments are performed on the speech signals under the
two convolutive mixing models and the simulated room mixing model. According to experiments, the increased
signal to interference plus noise ratio of separated signals demonstrates that the improved algorithm outperforms
the amplitude correlation permutation algorithm in terms of separation performance and robustness.
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Introduction

The process of separating many sources that have been
blended together using just their observable mixtures and
unidentified paths is known as “blind source separation”(1).
As a rapidly developing emerging signal processing
technology in the past 20 years, it has been widely used in
digital communication, (2, 3) biomedical signal processing,
(4, 5) speech signal processing, (6, 7) and other fields.

In recent years, the blind source separation of convolutive
mixtures has become a research hotspot due to its great
accordance with the current situation. The time-domain
approach (8) and the frequency-domain method are its
primary separating techniques. The Short Time Fourier
Transform (STFT) converts convoluted mixed time-domain
data into instantaneous mixed time-domain signals in the
frequency domain. The instantaneous mixed signals in the
frequency domain can be separated with the mature ICA

algorithm, but the scaling and permutation ambiguities (9)
must be resolved.

The separation matrix can be normalized to address the
scaling ambiguity. The direction of arrival (DOA) technique
(10) and the amplitude correlation algorithm between
adjacent frequency bins (11) are the two primary methods
for resolving permutation ambiguity (Murata algorithm).
The former algorithm is more robust, but it has high
environmental sensitivity and computational complexity.
The latter algorithm exploits the amplitude dependence of
adjacent frequency bins of the signals. It takes the sum of
the amplitude correlations of adjacent frequency bins of the
mixed signals as a cost function, maximizes it, and finds
the corresponding permutation. Although this approach is
computationally cheap, its performance is erratic and it lacks
robustness. The current research shows that the Murata
algorithm’s poor robustness can be effectively improved by
changing the impact factor of the frequency bins sorted in its
neighborhood, thus improving its performance (12).
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In this paper, we have studied the effect of frequency
spacing and the separation performance at each frequency
bin on the amplitude correlation permutation algorithm.
The algorithm adjusts the influence of each frequency bin
on the permutation result by spacing influence weight
and performance influence weight. The validity of two
influence weights is verified by experiments. An improved
permutation algorithm is proposed with two influence
weights considered simultaneously.

Frequency-domain blind source
separation model of convolutive
mixtures

Under the convolutive mixing model, the N independent
sources si(t)(i = 1, 2, · · · ,N) are transmitted, and the mixed
signals received by the M sensors are xj(t)(j = 1, 2, · · · ,M).
Its model can be expressed as:

xj(t) =
N∑
i=1

P−1∑
p=0

hji(p)si(t − p), j = 1, 2, · · · ,M (1)

where hji(p) denotes the impulse response of the source i and
sensor j. When p = 1, the model is an instantaneous mixing
model, and when p > 1, the model is a convolutive mixing
model. P is the order of the impulse response function filter.
Express the above expression as a vector form:

x(t) =
P−1∑
p=0

H(p)s(t − p) (2)

where s(t) = [s1(t), s2(t), · · · , sn(t)]T and
x(t) = [x1(t), x2(t), · · · , xm(t)]T are source vectors and
mixed signal vectors, respectively. H(p) refers to the impulse
response matrix with a delay of p, which can be expressed as:

H(p) =


h11(p) h12(p) · · · h1n(p)
h21(p) h22(p) · · · h2n(p)
...

...
. . .

...

hm1(p) hm2(p) · · · hmn(p)

 (3)

A short-time Fourier transform (STFT) is performed on both
sides of Equation (2) to obtain a frequency-domain mixing
model of the convolved mixed signals:

X(fk, τ) = H̃(fk)S(fk, τ) (4)

where S(fk, τ) = [S1(fk, τ), S2(fk, τ), · · · , SN(fk, τ)]T and
X(fk, τ) = [X1(fk, τ),X2(fk, τ) · · · ,XM(fk, τ)]T are STFT
signals of the sources and the mixed signals at frequency
bin fk , respectively, fk represents the frequency bin index,
and τ represents the time index. H̃(fk) represents the
mixing matrix after the discrete Fourier transform, i.e.,

H̃ij(fk) = DFT(hij), hij = [hij(0), hij(1), · · · , hij (P − 1)].
The demixing model in the frequency domain obtained by
Equation (4) is:

Y(fk, τ) =W(fk)X(fk, τ) (5)

where W(fk) is the demixing matrix at frequency bin fk ,
and Y(fk, τ) = [Y1(fk, τ),Y2(fk, τ), · · · ,YN(fk, τ)]T is the N
separated signals at frequency bin fk , which can be restored
to the time-domain signals by inverse short time Fourier
transform (ISTFT).

Ambiguity problem

STFT is used in frequency-domain blind source separation
to transform time-domain convolutive mixed signals into
frequency-domain instantaneous mixed signals, and an
instantaneous blind source separation technique is used to
acquire the separated signals at each frequency bin. However,
owing to scaling and permutation ambiguities of frequency-
domain blind source separation, the mixing matrix H̃(fk)
and the demixing matrix W(fk) in Equations (4) and (5) will
satisfy:

W(fk) = D(fk)P(fk)H̃−1(fk) (6)

Where D(fk) is a random diagonal scaling matrix that
captures scaling uncertainty, and P(fk) is a matrix of
permutations that illustrates the permutation ambiguity.
Different amplitude gains of the split signals at each
frequency bin will result from scaling ambiguity.
Permutation ambiguity can lead to sorting errors in
the separated signals. Both will affect the algorithm’s
separation effect.

The separation matrix of each frequency bin can be
normalized in order to remove scaling ambiguity (13):

W(fk)← diag[W−1(fk)]W(fk) (7)

Due to its low requirements for priori information and small
computational complexity, the Murata algorithm is widely
used for permutation ambiguity. However, the algorithm has
poor robustness and unstable performance. The proposed
algorithm effectively improves the disadvantage of the
Murata algorithm by introducing the spacing influence
weight and the performance influence weight, so that a better
performance can be obtained.

Permutation algorithm

Correlation-based permutation algorithm

In order to resolve the permutation ambiguity, the
correlation-based permutation method (Murata algorithm)
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FIGURE 1 | The impact of spacing influence weights on performance.

sorts the separated signals by determining the amplitude
correlation coefficient between each unsorted frequency
bin and its surrounding frequency bins. When sorting the
frequency bin f , we take the signals in a certain neighborhood∣∣g − f

∣∣ ≤ L as a reference and choose a permutation that
can maximize the amplitude correlation coefficient. The
frequency bin’s most appropriate permutation is this one.
This is how the algorithm works:

It is known that the permutation of the separated signals
on the sorted frequency bins g is 5g , and the permutation
5f of the frequency bin f can be obtained by:

5f = arg max
5

∑
|g−f |≤L

N∑
i=1

cor
(∣∣Y5i (f )∣∣ , ∣∣∣Y5g

i (g)
∣∣∣) (8)

where Y5i (f )= [Y
5
i (f , 1), · · · ,Y5i (f , τ) · · ·Y

5
i (f ,T)]

represents the separated signal i of the frequency bin
f . 5 is one of the permutations on frequency bin f .
τ means time index and T represents time length.
Y
5g
i (g) = [Y

5g
i (g, 1), · · · ,Y

5g
i (g, τ) · · · ,Y

5g
i (g,T)]

indicates the separated signal i of the sorted frequency bins
g, and |•| denotes gaining signal amplitude. From the above
formula, the correct permutation at the frequency bin f
can be obtained.

Improved permutation algorithm

A large number of experiments show that the Murata
algorithm doesn’t have a good performance, for it treats all
the sorted frequencies in the neighborhood equally. Some
frequency bins far away from the frequency to be sorted or
with poor separation performance are also used as references.
These low-reliability frequency bins will lead to permutation
errors, which will make the whole algorithm less robust.

FIGURE 2 | The impact of spacing influence weights on performance.

Aiming at the earlier discussed problems, we propose an
improved algorithm.

If we only consider the effect of the adjacent frequency
bin (neighborhood range L = 1), once the permutation
of this frequency bin goes wrong, the permutation of all
the frequencies subsequent will be incorrect. Therefore,
the reference for permutation should be the sum of the
correlation coefficients of the frequency bins within a
certain neighborhood (neighborhood range L ≥ 2). Also, the
characteristic that the correlation among homologous signals
is much higher than that among heterogeneous signals will
gradually weaken as the neighborhood range increases. Thus,
the spacing influence weight ξ(g, f ) should decrease as the
neighborhood range increases. Therefore, ξ(g, f ) can be
defined as (12):

ξ(g, f ) =
L− |g − f | + 1

L
(9)

The spacing influence weight proposed in (12) decreases
linearly with the expansion of the neighborhood range. But
the larger the frequency spacing |g − f | is, the stronger the
permutation interference between the frequency bins g and
f is. Therefore, the effect of the frequency bins with small
spacing should be highlighted as much as possible. Thus, we
define the improved spacing influence weights as:

ξ(g, f ) =
(
L− |g − f | + 1

L

)2
(10)

In Equations (9) and (10), L is the neighborhood range,
g ∈ (f − 1, f − 2, · · · , f − L) represents the frequency bins
that have been sorted in the neighborhood, and f indicates
the frequency bin to be sorted. The farther the frequency
bin g is from the frequency bin f , the smaller the spacing
influence weight ξ (g, f ) is.
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TABLE 1 | Influence of different neighborhood ranges on algorithm performance.

Neighborhood range 2 3 4 5 6 7 8 9 10

SINR (dB) 20.24 22.49 23.41 24.12 24.67 23.76 23.81 23.59 23.64

FIGURE 3 | Performance comparison of algorithms in 10-order mixed
model.

The demixing matrix across frequencies has continuity,
which can characterize the separation performance of
each frequency bin (14). Generally speaking, for adjacent
frequency points, if the signals are from the same source, they
are more correlated, and the determinant of the demixing
matrices at these frequency bins is continuous. When the
determinant of the demixing matrix changes drastically, the
correlation among signals from different sources exceeds
that among signals from the same source. If frequency bins
with poor separation performance are used as a basis for
judging the permutation, it is bound to cause a decrease in
the permutation effect.

Thus, the mean squared error corresponding to the
frequency bin f is defined as follows:

ϕ(f ) =
1
L

∑
|g−f |≤L

(∣∣det(W(g))
∣∣− ∣∣det(W(f ))

∣∣)2 (11)

where W(f ) is the demixing matrix of frequency bin f ,
det(•) represents the determinant operation of the matrix,
|•| denotes the modulo operation. The larger the mean
squared error ϕ(f ) is, the more intense the determinant
changes, which means the separation performance of the
frequency bin is poor. The smaller the mean squared error
ϕ(f ) is, the better the continuity of the demixing matrix is, so
the performance influence weight is inversely proportional
to the mean squared error ϕ(f ). Therefore, we define the

performance influence weight at frequency bin f as:

φ(f ) =
1

ϕ(f )
(12)

The improved decision formula based on the amplitude
correlation permutation algorithm obtained by the above
analysis is:

5f = arg max
5

φ(f )
∑
|g−f |≤L

ξ(g, f )
N∑
i=1

cor
(∣∣Y5i (f )∣∣ , ∣∣∣Y5g

i (g)
∣∣∣)

(13)

Algorithm steps

Step 1:The time domain convolutive mixed signals should be
converted into instantaneous mixed signals at each frequency
bin using the STFT.

Step 2:The JADE algorithm is used to accomplish the
instantaneous blind source separation at each frequency bin
in order to produce the separated signals Y(f , τ) and the
demixing matrix W(f ).

Step 3:Remove the signal’s ambiguous scaling at each
frequency bin in accordance with Equation (7).

Step 4:The separated signals at the first frequency bin f1
are used as a reference for permutation, and the optimal
neighborhood range Lmax is given.
Step 5:Starting from the second frequency bin f , if∣∣f − f1

∣∣ < Lmax , the neighborhood range L =
∣∣f − f1

∣∣,
otherwise the neighborhood range L = Lmax .
Step 6:Calculate ξ(g, f ) and φ(f ) according to Equations

(10) and (12), and solve the permutation problem of
frequency bin f according to Equation (13).

Step 7:The frequency-domain signals are restored to the
time-domain signals by ISTFT, and the estimation of the
source signals is completed.

Simulation experiments and
analysis

In order to verify the performance of the proposed ambiguity,
the algorithms before and after the improvement are
compared by simulation experiments. Two sources, two
sensors, and an impulse response function filter with an
order of 10 are present. The source signals for the simulation
experiment were two voice signals taken from the Hiroshi
Sawada site of the NTT Communication Science Laboratory.
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FIGURE 4 | Performance comparison of algorithms in 25-order mixed
model.

FIGURE 5 | Performance comparison of algorithms under the
simulated room mixing model.

The signal to interference plus noise ratio (SINR) is used to
estimate the separation effect, defined as:

SINR = 101g
||starget(n)||2

||y(n)− starget(n)||2
(14)

where starget(n) represents the target signal, and y(n) denotes
the separated signal.

The improved algorithm in this paper is called SP-Murata.
We test its performance under different load weights. The
SINR is applied in the examination to measure the separation
effect of the improved algorithm.

When the performance influence weight ϕ(f ) = 1 and
the neighborhood range L = 5 are known, we test the
two spacing influence weights ξ(g, f ) separately. As shown

in Figure 1, compared with the Murata algorithm, both
the spacing influence weight given in (12) [Equation (9)]
and that proposed in this paper [Equation (10)] can
improve the separation performance to a certain degree.
The spacing influence weight proposed in this paper has the
best performance among the three algorithms. Compared
with the Murata algorithm, the proposed algorithm can
improve the SINR by 2−3 dB, which is 1−2 dB better
than the algorithm in (12). Therefore, in the subsequent

experiments, ξ(g, f ) =
(
L−|g−f |+1

L

)2
is selected for the

spacing influence weight.
When the spacing influence weight ξ(g, f )=1 and the

neighborhood range L = 5, we test whether the addition of
the performance influence weight ϕ(f ) could improve the
separation performance. Figure 2 shows that compared to
the Murata algorithm, the performance influence weight ϕ(f )
can somewhat enhance the performance of the algorithm.
This can prove the effectiveness of performance influence
weight ϕ(f ) on algorithm improvement. Because both types
of influence weights can improve the performance of the
algorithm, we simultaneously use them to improve the
Matura algorithm. What needs to be determined is the
optimal neighborhood range in permutation, so the following
experiment is performed:

It can be seen from the above analysis that the algorithm’s
performance has improved under the action of ξ(g, f ) and,
ϕ(f ), respectively. Therefore, the two influence weights are
simultaneously applied to the Murata algorithm. In order
to find the optimal neighborhood range of the improved
algorithm, we compare the algorithm’s performance in
different neighborhood ranges without noise. The results are
shown in Table 1.

It shows that the SINR of the algorithm increases with the
increase in the neighborhood range. When the neighborhood
range reaches a certain value L = 6, the performance of the
algorithm tends to be stable. When the neighborhood range
is 6, the two advantages of the algorithm performance and the
minimum calculation amount can be considered at the same
time. Therefore, the value of the optimal neighborhood range
is set to L = 6 in the following simulated trials.

Then, using the 10-order filter convolutive mixing model,
the 25-order filter convolutive mixing model, and the
simulated room mixing model, we evaluate the performance
of the suggested algorithm under these three simulation
scenarios (15). In the simulated room mixing model, we
construct a simulated room of 5m× 5m× 2.5m, and the
impulse response function filter’s order can be 400 or higher.
To test the mixed signal, different SNRs of Gaussian white
noise are applied. In Figures 3–5, the average SINR of the
separated signals is displayed.

Figures 3–5 show the performance comparison between
the suggested approach and the Matura algorithm for
the three different convolutive mixing models: the 10-
order model, the 25-order model, and the simulated
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room model. The figures show that, in comparison to
the Murata algorithm, the SP-Murata algorithm performs
much better under these three convolutive mixing models.
The SINR reflects this. The performance of the algorithm
can be increased by 2−3 dB for both the 10-order and
25-order convolutive mixing models. The performance
of the algorithm can be improved by 3−4 dB in the
simulated room model.

Conclusion

The frequency domain solution of the permutation
ambiguity problem of multiple frequency bins is necessary
for the blind source separation technique of convolutive
mixes. This study presents a frequency-domain blind source
separation permutation method with improved amplitude
correlation based on effect weights. The algorithm considers
the effect of adjacent frequency bin space, separation
performance of each frequency bin, and neighborhood
ranges, and solves the poor robustness of the Matura
algorithm. In this paper, we verify the improvement of the
proposed two types of influence weights on the performance
and finally obtain the SP-Matura algorithm. On the basis
of this, various convolutive mixing models are used to test
the algorithm’s performance. The outcomes demonstrate
that the suggested algorithm can substantially enhance
separation performance.
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