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RSA’s strong cryptosystem works on the principle that there are no trivial solutions to integer factorization.
Furthermore, factorization of very large semi primes cannot be done in polynomial time when it comes to the
processing power of classical computers. In this paper, we present the analysis of Fermat’s Last Theorem and
Arnold’s Theorem. Also highlighted include new techniques such as Arnold’s Digitized Summation Technique
(A.D.S.T.) and a top-to-bottom, bottom-to-top approach search for the prime factors. These drastically reduce
the time taken to factorize large semi primes as for the case in RSA Cryptosystem.
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1. Introduction

In year 1978, Ronald Rivest, Adi Shamir and Leonard
Adleman released one of the first public-key cryptosystem
(1) known as RSA Cryptosystem. It has been over 40 years
down the line and it still one of the strongest cryptosystems
in the world. It takes one of the greatest problems in
Number Theory (integer factorization) to be one of the most
suitable solutions to computer security. There are still no
trivial solutions to the factorization of semi primes. The
RSA Cryptosystem works on the basis of multiplying two
relatively large prime numbers k and l of at least 50 digits
each (2, 3). The semi prime (y) obtained can be as big as
100 to 600 digits (500 to 2048 bits). Attempts have been
made to crack these RSA numbers with modern factorization
methods such as the Elliptic Curve Method, Quadratic Field
Sieve and the Number Field Sieve (4). Still, the factorization
of these large semi primes might take several months even
for a supercomputer. It takes an estimated 2000 years’ work

for a 2.2 GHz Opteron computer to factorize a 232 digit RSA
number (5).

Recently, there have been advancements in the field of
quantum cryptography which might lead to the possibility of
factorizing these large semi primes in just a few days if not
hours (6). The Shor Algorithm is one of the most commonly
used algorithms in quantum computing developed by Peter
Shor. Though quantum cryptography seems promising, they
are still not yet widely applicable (7). This might remain
the case for the next few years to come. In comparison,
classical computers still cannot factorize very large semi
primes in polynomial time (8, 9). At least not until there are
significant technical developments in the processing power
of the classical computers or a breakthrough is found for
integer factorization. If a trivial solution is found for integer
factorization then the RSA Cryptosystem would be rendered
useless (10).

We are going to analyze a version of Fermat’s Last
Theorem and Arnold’s Theorem for right angled triangles.
From the Fermat’s Last Theorem, we obtain the shortened
Diophantine equation
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x2
− z2

= y

This equation can be further expanded
to (x+ z) (x− z) = y. From the first part of the
equation you get the equations x + z = k and x − z = l
where the value of y is the semi prime; k and l are the two
prime factors for y.

x, y, z, k, l ∈ N

That equation is used to form the Fermat’s method for
factorization (11–15). We also look at Arnold’s Theorem
which is derived from the Pythagorean equation a2

+b2
= c2

which can be written as a2
= c2

− b2 (16). This can be
expanded to the equation a2

= (c+b) (c−b). So if c−b = 1
it will leave us with the equation a2

= b+c. Therefore, the
two equations which form Arnold’s Theorem for right angled
triangles are a2

= b+c and c-b = 1. They are very critical
in setting up a factorization limit which will in turn create a
different angle for finding the prime factors.

The technique employed after getting the factorization
limit is referred to as the top-to-bottom, bottom-to-top
approach. It involves several independent operations which
will be running simultaneously from two points A to B, B
being the factorization limit. There are two operations; one
will run from point A heading toward point B and the other
running from point B heading toward point A. there will also
be two other operations starting from the central point O.
One will run from point O toward point A and the other
will run from point O toward point B. Therefore, if the prime
difference between the two prime factors is too big, too small
of too centralized you will find it in just a matter of seconds.
This was a problem with Fermat method for factorization
(17–22).

Techniques such as Arnold’s Digitized Summation
Technique (A.D.S.T.) helps identify hidden properties of
large semi primes used in RSA Cryptography. It simply
involves adding the digits of a number until one is left with
only one single digit (23). Since RSA numbers have hundreds
of digits, A.D.S.T. is going to bring them down to just one
digit. That is combined with the operation y = 1, which
will always give you a multiple of 4. These techniques are
solely meant to drastically reduce the time taken to factorize
large semi primes. This aligns with the objective of the paper
which is to be able to factorize and factorize RSA numbers in
polynomial time using the processing power of the average
classical computer.

2. Research methodology

Here, we give the definitions of some terms which are helpful
as the research methodology.

Definition 2.1

Arnold’s Digitized Summation Technique (A.D.S.T.): This
refers to the subsequent addition of the digits of a number
until you are left with only one single digit.

Definition 2.2
Digitized number form (D.N.F.): This refers to the digit

you obtain after applying A.D.S.T. to a number.
Definition 2.3
Semi primes: These refer to composite numbers which

only have two prime factors.
Definition 2.4
Prime difference: This refers to the difference between the

two prime factors of the semi prime.
Definition 2.5
Factorization limit: This refers to the point where you have

the largest possible prime difference between the two prime
factors of the semi prime.

3. Results and discussion

Here, we give the results of the study and further discussion.
We start with the analysis of a version of Fermat Last
Theorem which involves squares and then Arnold’s Theorem
on right angled triangles.

Theorem 3.1
If y is a semi prime in x2

− z2
= y which can be

expanded to (x + z) (x − z) = y, then (x + z) = k and
(x − z) = l where k and l are the two prime factors of the
semi prime y such that k > l.

Proof
We have seen that k = l = y from the statement above.

Also k − l = d, where (d) is the prime difference and (y) is
the semi prime. From the Gold Bach Conjecture we observe
that when you add two prime numbers you will eventually
have an even number. This is true for prime numbers greater
than 2. From that we get that

[k+ l = 2x.]

The above equation means that x is half the value of the two
prime numbers k and l. It can also be written as k = 2x − l.
We now replace k from the two equations k = l = y
and k + l = 2x. The equation k = l = y will be
(2x − l)l = ywhich is 2xl − l2 = y and k + l = 2x
will be 2x − l + l = 2x. The equation 2xl − l2 = y can be
rewritten as the quadratic equation;

l2 − 2xl+y = 0

This will give us the two equations l = x −
√
x2 − y

and k = x +
√
x2 − y. So let us say that

√
x2 − y = z.We

get that l = x − z and k = x + z. Therefore, the equation
k = l = y is written as (x + z)(x − z) = y. This equation
can be written as

x2
− z2

= y.
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We have seen that x + z = k and x − z = l. From the
two equations we get that z can be expressed as z = k − x
and z = x − l. Combining the two equations we get
k − x = x − l and k + l = 2x. Dividing both
sides by 2, one gets that x = k+l

2 . Replacing the x in the
equation z = k − z we getz = k+ k+l

2 . This can be factored
into the equation z = k−l

2 .
Replacing the x and z in the equation x2

− z2
= y with

x = k+l
2 and z = k−l

2 .
We get

(
k+ l

2
)

2
−(

k− l
2

)
2
= y.

The equation ( k+l2 )
2

is expanded to
k2
+2kl+l2

4 And the equation ( k−l2 )
2

is expanded to

k2
− 2kl+ l2

4
.

Therefore,
( k+l2 )

2
−( k−l2 )

2
= y becomes

k2
+ 2kl+ l2

4
−

k2
− 2kl+ l2

4
= y.

Solving the equation, we get,

k2
+ 2kl+ l2

4
−

k2
− 2kl+ l2

4
=

k2
+2kl+l2−k2

+2kl−l2
4 =

4kl
4 = kl.

Hence;

y = kl

We have observed that z can be expressed as the
equation z = k−l

2 and k-l = d. So by replacing k − l
with d in the first equation, we get that z = d

2 . This can also
be written as

d = 2z

also since (x + z)(x − z) = y and d = (x+ z)− (x − z).
This gives us d = x + z − x = z which can be solved back
tod = 2z. The value of d and z are directly proportional, so
if the prime difference is big then the z is also be big. Also,
we know that x > z, so during computation it takes a longer
time to find the value of x if d is very large. This is because
using the Fermat method for factorizing semi primes; we first
start by the searching for the value of x.

From the equations above we can tell that just by having
the semi prime and the prime difference we obtain the two
other prime numbers k and l. This is majorly due to the
fact that d = 2z.

Problem

Given the semi prime 55, one finds the two prime numbers
given that the prime difference is 6?

Solution
Since z = d

2

z =
6
2
= 3

We also know that x2
− z2

= y and we have the value for z
and y. After replacing these values, we get the equation x2

−

32
= 55 which is x2

= 55+9 = 64. Therefore, x will be 8.
We also saw that x+ z = k and x− z = l where k and l are
the two prime numbers.

So 8+ 3 = k and 8− 3 = l
The two prime numbers will be k = 11 and l = 5.
k, l, x, y, z, d ∈ N
Theorem 3.2
Arnold’s Theorem for right angled triangle states

that a2
= b+c. If a is the smallest side of a right-angled

triangle where ab and a = b thenc-b = 1
Proof
The Pythagorean equation a2

+ b2
= c2 can also be

written as a2
= c2

− b2. This can be expanded to the
equation a2

= (c + b)(c − b). So if c − b = 1 it leaves
us with the equation

a2
= b+c

Therefore, the two equations which form Arnold’s Theorem
for right angled triangles are

a2
= b+c

and

c− b = 1

Using the two equations we can formulate the simultaneous
equation

c+ b = a2 (a)

c− b = 1 (b)

So when a right angled triangle satisfies both equation and
we are only given the value of a, we can easily obtain the
two other sides. This is possible through the simultaneous
equation above. This brings us back to the equation x2

−

z2
= y in theorem 3.1. In this case, we replace a2 withy.

So when you are only given the semi prime y, one solves it
using the simultaneous equation

x+ z = y (a)

x− z = 1 (b)

https://doi.org/10.54646/bijscit.2021.11
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Problem
Given the semi prime 55 can you obtain the two prime

numbers k and l. (Note that this time we are not given the
prime difference.)

Solution

x+ z = 55 (a)

x− z = 1 (b)

This will give you z = 27. To get the value of x we
substitute z from (equation a) with 27. This will give us
x + 27 = 55x = 28. Therefore, the equation x2

− z2
= y

will be 282
− 272

= 55.
To find the two prime numbers we used the two equations

x + z = k and x − z = l where k and l are the two prime
numbers. In this case we notice something very interesting
with our values for k and l

28+ 27 = k

28− 27 = l

Therefore, k and l will be 55 and 1. This means that using
Arnold’s Theorem of right-angled triangles; it treats the semi
prime as an actual prime number. So how is this important
to us? The Fermat method for factorization searches for the
prime difference of a semi prime y from 1 till an undefined
value. Using Arnold’s Theorem, we set a limit to the largest
prime difference a semi prime can have. By treating a semi
prime as a prime number, it means that the prime difference
will be the largest since it is k − 1. That is, we are only
subtracting one from the largest prime number k. When we
subtract any value larger than 1 then the prime difference
have a much smaller value. The largest possible prime
difference is what is referred to as the factorization limit. So
during the search for the prime difference through the search
of z, we run two operations simultaneously. One starts from
where the prime difference is smallest as it runs toward the
largest possible value for the prime difference. This is actually
what happens with the Fermat method for factorization. The
other operation runs from the largest possible value for the
prime difference as it heads down toward the smallest value.
When we say that it searches through the prime difference,
what we mean is that we modify the search for z since the
prime difference is directly proportional to z. The search uses
the equation x2

− z2
= y and we saw that d = 2z.

3.1. RSA cryptosystem

RSA Cryptosystem relies on the fact that finding the prime
difference of two large prime numbers of at least 50 digits

each cannot actually be done in polynomial time using a
single 2.2 GHz Opteron computer. However, adding this new
property into the equation it increases our chances of finding
the prime difference even if it is too big. Furthermore, if the
prime difference is too big or too small, we find it very fast
using the two operations which runs simultaneously. So the
most ideal prime difference for RSA numbers are not be too
large or too small. It should be centralized. However, since
we have the highest and lowest point where the values of the
prime difference are, we can actually modify the computer
operations to also accommodate the prime difference being
centralized. This is demonstrated on Figure 1 where point A
is where the prime difference is smallest, point O is where the
prime difference is centralized and point B is where the prime
difference is largest. Actually, we run a total of 4 operations
simultaneously to find the prime difference much faster. The
first operation starts at point A heading toward point O.
The second operation starts at point O heading toward point
A. The third operation also starts at point O but this time
heading toward point B. The final operation starts at point
B heading toward point O. This is what is referred to as the
top-to-bottom, bottom-to-top approach.

Note that this is just the primary application of that
concept. One can actually split point A to point O twice and
point O to point B also twice such that we have a total of 8
operations running simultaneously. One can have as many
operations running simultaneously depending on the size
of the semi prime. For semi primes up to about 50 digits,
having four operations running simultaneously is enough.
But when the semi prime is about 600 digits as the case
with RSA numbers, we can even have 32 operations running
simultaneously. This, however, depends on the processing
power of the computer. The operations are not exactly tied
to be done on one computer. One can also assign as many
computers as he/she wish to run some of the operations. This
depends on the availability and practicality of using many
computers in the first place. There are other properties of
semi primes that we will see ahead that also help in reducing
the number of tests the operations entail.

Going back to the equation x2
− z2

= y, we realize that
the expression x-z does not have to be 1 as stated in Arnold’s
Theorem for right angled triangles. We can try it with other
integers 1, 2, 3, 4 . . . and subject it to the simultaneous
equation. If we let x − z = 2 we get that the equation
x2
− z2

= y is expanded to (x + z)(x − z) = y. So if
x− z = 2 the two equations will be

2x+ 2z = y (a)

x− z = 2 (b)

Solving for the semi prime 55 we will get

2x+ 2z = 55 (a)
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FIGURE 1 | Top-to-bottom, bottom-to-top approach for finding the prime difference.

FIGURE 2 | The graph shows the plotted values for the different
values of x − z in x2

− z2
= 55.

x− z = 2 (b)

We multiply equation Eqn.(b) by 2 and add the two equations
which give us x = 14.75. Substituting the x in equation
b we get that z = 14.75 − 2. Therefore, x = 14.75
and z = 12.75.

From the Table 1 above we observe that only when x− z is
1, 5 and 11 is when the values of x, y and z are whole numbers.
That isx, y, z ∈ Z. We also observe that the integers of x − z
are the same when x−z = l and x+z = kwhich in our case
is 5 and 11. But for x-z = 11 the 3 in z is negative. The real
value for x−z is actually 6 but in our case, it gives us different
values for x and z. However, when we use 6 as the prime
difference in Fermat’s Last Theorem equation x2

− z2
= y

we obtained the values for x and z to be 8 and 3, respectively.
Furthermore, one also notice that for (x − z) = 6 which is
the actual prime difference between the two prime numbers
the value of z are less than one. That is z < 1.

The y-axis represents x2 while the x- axis represents z2.
The use of such curves is used in another complex method
of factorizing numbers known as the Elliptic Curve Method
which is not discussed in depth in this paper.

3.2. Arnold’s digitized summation
technique (A.D.S.T.)

We are now going to bring in Arnold’s Digitized Summation
Technique which simply involves adding the digits of a
number until one is left with only one digit. When one adds
the digit of a number like 1234 one gets 1+ 2+ 3+ 4 = 10,

which one keeps adding till he is left with only one digit,
so if one gets 10 one adds 1 + 0 = 1. The process of
adding is what is referred to as A.D.S.T. The resultant digit 1
becomes the Digitized Number Form (D.N.F.) of the number
1234. Since RSA Cryptosystem is based on using very large
numbers even up to 600 digits, we are going to utilize A.D.S.T
to look at some properties of such numbers which would
otherwise be hard to observe. The Python code below is
supposed to sum down a 1000 digits number into a single
digit in just a few seconds.

Considering that we are only given the semi prime (y),
we first need to find the digitized number form through
A.D.S.T. In other words, we need to add the digits of
that semi prime until we are left with only one single
digit. Since the semi primes in the case of RSA numbers
have over 100 digits, the Python code above is of great
help since it can find the D.N.F. of a-thousand-digit semi
prime in just a second. If the Digitized Number Form
(D.N.F.) is 2, 5 or 8, it means that the semi prime is of
the form 6n − 1. If it is 1, 4 or 7, it means that the semi
prime is of the form 6n + 1. A semi prime cannot have
a D.N.F. of 3, 6 or 9. This is because such numbers are
all multiples of 3. This holds true if the semi prime is an
odd number, which is true for almost all cases apart from
when another prime number is multiplied by 2 which is
also a prime number.

Examples
55 = 5+ 5 = 10,10 = 1+ 0 = 1 D.N.F. of 55 is 1 and

is of the form (6n+ 1)

65 = 6+ 5 = 11, 11 = 1+ 1 = 2 D.N.F. of 65 is 2 and
is of the form (6n− 1)

99 = 9+ 9 = 18, 18 = 1+ 8 = 9 D.N.F. of 99 is 9 and
it will be a multiple of 3

For even numbers, if a number has a D.N.F. of 1, 4 or 7,
then it is of the form 3n + 1 where n is an odd number. If a
number has a D.N.F. of 2, 5 or 8, then it is of the form 3n− 1.
If it has a D.N.F. of 3, 6 or 9 it still remains to be a multiple of
3. So how does A.D.S.T. come in to the actual equation used
in the factorization process?

3.3. Arnold’s digitized summation
technique and the x2−z2 = y equation

When we look at the D.N.F. of numbers forming the
equation x2

− z2
= y, we notice something very interesting.

Below, we have highlighted two tables which form the basic
identities for semi primes having either a D.N.F. of 1, 4 and
7 or 2, 5 and 8.

From Table 2 we notice that all the values of x2 have a
D.N.F. of 9 and from Table 3, we notice that all the values

https://doi.org/10.54646/bijscit.2021.11


6 Omollo and Okoth

FIGURE 3 | Python code showing how you can obtain the A.D.S.T. of a number.

of z2 have a D.N.F. of 9. This means that those values
are actually multiples of 9. This property is seen with the
multiples of 9 shown below.

Example
9 = 9 D.N.F. is 9
18 = 1+ 8 = 9 D.N.F. is 9
27 = 2+ 7 = 9 D.N.F. is 9
36 = 3+ 6 = 9 D.N.F. is 9
45 = 4+ 5 = 9 D.N.F. is 9
54 = 5+ 4 = 9 D.N.F. is 9
63 = 6+ 3 = 9 D.N.F. is 9
72 = 7+ 2 = 9 D.N.F. is 9
81 = 8+ 1 = 9 D.N.F. is 9
90 = 9+ 0 = 9 D.N.F. is 9
Examples of real values of x2

− z2
= y and their

D.N.F. are shown on the tables below. The values of
Tables 4, 6 are obtained from Fermat Last Theorem as
shown in theorem 3.1.

TABLE 1 | The values of x − z from 1 to 11 for the semi prime 55.

x - z x2−z2 = y

1 282
− 272

= 55
2 14.752

− 12.752
= 55

3 10.666672
− 7.666672

= 55
4 8.8752

− 4.8752
= 55

5 82
− 32

= 55
6 7.583332

− 1.583332
= 55

7 7.428572
− 0.428572

= 55
8 7.43752

− (−0.5625)2
= 55

9 7.555562
− (−1.44444)2

= 55
10 7.752

− (−2.55)2
= 55

11 82
− (−3)2

= 55

Now we are look at examples of real values x2
− z2

= y
and their D.N.F. This time the values of Tables 8, 10 are
obtained from Arnold’s Theorem for right angled triangles
as shown in theorem 3.2.

It is important to note that the values for the semi prime
y are the same for Tables 4, 8. The same is seen with
Tables 6, 10 which have the same values for y. But as we
saw earlier, the two theorems give different values for x and z.

TABLE 2 | D.N.F. of the values of x and z when the D.N.F. of the semi
primes are 2, 5 and 8.

x2 − z2 = y

9 − 7 = 2
9 − 4 = 5
9 − 1 = 8

TABLE 3 | D.N.F. of the values of x and z when the D.N.F. of the semi
primes are 1, 4 and 7.

x2 − z2 = y

1 − 9 = 1
4 − 9 = 4
7 − 9 = 7

TABLE 4 | Real values of x, y and z when the D.N.F. of the semi
primes are 2, 5 and 8.

x2 − z2 = y

81 − 16 = 65
81 − 4 = 77
36 − 1 = 35
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However, the D.N.F. identity actually remains the same when
we use either of the two theorems.

TABLE 5 | D.N.F. of x, y and z for the values in Table 4.

x2 − z2 = y

9 − 7 = 2
9 − 4 = 5
9 − 1 = 8

TABLE 6 | Real values of x,y and z when the D.N.F. of the semi
primes are 1, 4 and 7.

x2 − z2 = y

64 − 9 = 55
256 − 9 = 247
196 − 81 = 115

TABLE 7 | D.N.F of x, y and z for the values in Table 6.

x2 − z2 = y

1 − 9 = 1
4 − 9 = 4
7 − 9 = 7

TABLE 8 | Real values of x, y and z when the D.N.F. of the semi
primes are 2, 5 and 8.

x2 − z2 = y

1089 − 1024 = 65
1521 − 1444 = 77
324 − 289 = 35

TABLE 9 | D.N.F of x, y and z for the values in Table 8.

x2 − z2 = y

9 − 7 = 2
9 − 4 = 5
9 − 1 = 8

TABLE 10 | Real values of x, y and z when the D.N.F. of the semi
primes are 1, 4 and 7.

x2 − z2 = y

784 − 729 = 55
15376 − 15129 = 247
3364 − 3249 = 115

TABLE 11 | D.N.F of x, y and z for the values in Table 10.

x2 − z2 = y

1 − 9 = 1
4 − 9 = 4
7 − 9 = 7

From Tables 4, 6, 8, 10 we also notice that if x2 or z2 is an
even number in x2

− z2
= y (Fermat’s Last Theorem) then it

also be an even number in x2
− z2

= y (Arnold’s Theorem)

3.4. Arnold’s digitized summation
technique and they = 1 operation

Here we look at the final step in an attempt to factorize
large semi primes in polynomial time. We have a total of 4
scenarios for the y = 1 operation.

i. If y+1 is divisible by 4 and y has a D.N.F. of 2, 5 or 8, then
x2 is divisible by 36.

ii. If y-1 is divisible by 4 and y has a D.N.F. of 2, 5 or 8, then
z2 is divisible by 4.

iii. If y+1 is divisible by 4 and y has a D.N.F. of 1, 4 or 7,
then x2 is divisible by 4.

iv. If y-1 is divisible by 4 and y has a D.N.F. of 1, 4 or 7,
then z2 is divisible by 36.

We obtained these properties of the semi primes while
trying to find the trivial solution for integer factorization.
Eventually, we did not get any trivial solution after the
analysis of several semi primes and composite numbers in
general. However, by studying the sequence of semi primes
containing the same D.N.F., we were able to come up with the
four definite scenarios shown above. They are incorporated
into the programs which were running simultaneously in
search for the value of x2 and z2. They are able to drastically
reduce the time taken to factor large semi primes once
combined with the top-to-bottom, bottom-to-top approach.
We are still carrying out further research in search for a trivial
solution for integer factorization.

4. Conclusion

We can be able to conclude that it is technically possible
to factorize relatively large semi primes in polynomial time
using the processing power of the average classical computer.
Using techniques such as Arnold’s Digitized Summation
Technique (A.D.S.T.) and the top-to-bottom, bottom-to-
top approach, the time taken to factorize large semi primes
will be drastically reduced. This, we find that has greater
implications on RSA which is about large prime numbers.
Our paper provides an insight into reviewing RSA and
excites further research interests in co-primes and primes,

https://doi.org/10.54646/bijscit.2021.11
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as a breakthrough to improving cryptographic chances in
computer and network security in regards to data.
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