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The purpose of this study is to compare the accuracy of several deep-learning models for the identification of
rice weed. In this study, 1500 datasets of local rice and 1000 datasets of weed were resized and applied to the
input size of the network, respectively. A total of 70% of the data were used for training, and the remaining 30%
were used for validation. MATLAB R2018a was used to construct the AlexNet pre-trained model using a transfer
learning strategy, and by changing the AlexNet model, RiceWeedNet, a convolutional neural network, was created.
Metrics such as network accuracy, recognition accuracy, precision, and recall were used to assess both models’
performances. While the test set’s identification accuracy is 97.713415%, its precision is 0.9776, and its recall
value is 0.9803. The RiceWeedNet model achieved a network accuracy of 100%. A network accuracy of 90% and
a recognition accuracy of 73.780488% were reported by the AlexNet model, respectively. The created model may
be used instead of conventional weed detectors.
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Introduction

The source of sustenance for human existence on earth has
long been thought to be agriculture. There is a demand for
more agricultural output in proportion to the growth in the
global population. There is an urgent need to invest more
time in the agriculture industry. All forms of agriculture
require scientific support and financial investment since it is
necessary for human survival. The amount of accessible land,
crop yield, demand trends, and macroeconomic uncertainties
all have an impact on agricultural output (1). They set the
prices of agricultural products in this way. Crop yield in tons
per hectare is used to calculate the amount of crops produced.
Rice is an example of such a crop, and it just so happens to be
the one that this study is focusing on.

In recent years, rice has outperformed other grains such
as millet and sorghum in terms of popularity in Nigeria.
The most efficient way to meet the demands of the current
rate of global population growth is to increase rice output

wherever possible. However, weed has been a problem for
rice producers because of its severe disadvantage in the
agricultural industry. One of the plants that affects the
cultivation of rice is weed, which spoils around 75% of
Nigeria’s poor rice crop output (2). A weed is an undesirable
or unattractive plant. There is no botanical classification for
weeds. The term ‘weed’ refers to any plant that grows outside
of its normal environment. The phrase is occasionally used
to refer to species that are not plants but have the capacity to
thrive in a range of environments. They produce seeds that
persist for several years in the soil seed bank. The resources
that a plant normally requires, such as soil nutrients, direct
sunshine, water, and (to a lesser extent) room for growth,
are fiercely contested by them and the desired plants. Weeds
cause more losses in rice than pests do (3).

Classifying weeds appears to be a significant problem
in agricultural research. Identification of weed species
for management requires weed categorization. Weeds are
divided into two categories based on how frequently they
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have edges: weeds with thin leaves (having a lower frequency
of edge) and weeds with a lot of leaves (having a higher
frequency of edge) (3). Weed management is one of the
most crucial factors in agricultural yield, and for decades,
specialists have struggled to identify the locations and
numbers of weeds. It is now necessary to have a thorough
understanding of how to control weeds in rice fields in
order to reduce the amount of weed seed produced prior
to planting crops on the land, which will in turn reduce
weed emergence. There are several ways to control weeds,
including hoeing and chemical control (3, 4), the manual
method, farmer’s practices (5), and machine learning-based
image processing (6, 7).

The precise and successful categorization of weed seeds
demonstrated by certain cutting-edge models produced in
recent years is crucial for the management and control of
weeds. Weed seeds were categorized by Luo et al. (8) using
visual imagery and deep learning. Performance analysis of
deep-learning object detectors for cotton plant identification
was done by Rahman et al. (9). A two-step machine learning
technique for identifying rice diseases was developed by Pan
et al. (10). A deep learning method for paddy plant disease
identification and classification was developed by Haridasan
et al. (11). Deep convolutional neural network models for
weed identification in bell peppers grown in polyhouses
were researched by Subeesh et al. (12). These experiments
demonstrated the importance of automated weed detection
in the development of intelligent weed management gear.

According to Aggarwal et al. (13), deep learning is a field
of machine learning that makes use of neural network design.
Deep learning is being employed in applications including
picture and audio recognition, automatic text synthesis, and
automatic machine translation. Deep learning and image
processing have developed into intriguing fields of study in
both academia and industry. Nowadays, because of the need
for vast data acquisition, such as in the areas of geospatial
data infrastructure (14) and agrico-remote sensing (15),
deep learning, in particular, has emerged as a fascinating
study field. Deep learning is used in manufacturing (16),
transportation (17), the health (18), and agriculture (19)
sectors. Before the introduction of herbicides, laborers were
often involved in the laborious identification and removal of
weeds. Later, a few automatic weed detection techniques were
developed, but due to their poor accuracy, the farmers were
unable to use them. As a result, image processing techniques
were developed. Deep learning techniques have improved
object recognition and categorization in images. Therefore,
it is necessary to create a standardized framework to ensure
the detection and management of weeds on a rice farm. Deep
learning models’ usefulness for use in systems for detecting
rice weed is mostly unknown as of right now. To close the
gaps that exist, the present research aims to:

1. Develop a deep learning basic framework by
combining a pre-trained CNN model (AlexNet)
and a new model developed (RiceWeedNet).

2. Evaluate the performance of both models
under standard metrics such as training time,
network/training accuracy, recognition accuracy,
rejection rate, precision, recall, and F1 score.

Methodology

The study aims to develop a deep learning-oriented rice
weed detection system, create a local rice weed dataset for
the experimental procedure, create a basic deep learning
framework using a pre-trained CNN architecture (AlexNet)
and a newly developed CNN (RiceWeedNet), implement
the framework using MATLAB R2018a, and assess the
performance of both models using common metrics like
Training Time, Network/Training Accuracy, Recognition
Accuracy, Rejection Rate, and Prediction Occur. This system
was created in accordance with the system architecture as
shown in Figure 1.

Dataset acquisition

The dataset for this study was collected using a Sony
DSCWX350 digital camera at the Emmanuel Ogor Rice Farm
in Oriawo Area, Oyo Town, Oyo State, Omor in Ayamelum
LGA, and Ifite in Anambra State, all in Nigeria. A total of
2500 photos in total were taken, which suggests that there
are 1250 photographs per class accessible. Additionally, the
photos were divided into two datasets, with 30% of the images
in the testing dataset and 70% of the images (1750 samples) in
the training dataset (750 samples). As a result, there are 875
samples per class in the training dataset and 375 samples per
class in the testing dataset. The datasets are in JPEG format
and are kept in a repository with the labels “Training” and
“Test,” as well as “Rice” and “Weed” folders, respectively.

Image preprocessing

Pre-processing the picture to meet network requirements is
necessary to use the captured images for training and testing
the models. As a result, the photos were downsized to the
typical input size for the AlexNet Model of 227× 227× 3.

Alexnet model development

The pre-trained AlexNet model was used in this study’s
transfer learning strategy. The framework was created by
copying the Transfer Learning workflow with a few minor
modifications, such as fine-tuning the AlexNet model to
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FIGURE 1 | Depiction of the system architecture.

conform to the assigned classes, which in this case is three
(3), and the output layer, which is the classification layer,
to conform to the new number of classes, which is three
(3). A mini-batch gradient descent optimization technique
is the algorithm used during the training stage. The initial
batch data are split up into small groups (b) for the small
gradient descent procedure (n), and the network parameters
are adjusted using the prediction error.

T =
n
b

(1)

where T is the total, n indicates the amount of learning
phase repetitions, and b denotes the groups. The CNN weight
is greatly optimizable using the following equation’s stated
error function:

Et[f (w)] =
1
b

tb∑
i

= (t − 1) b+ 1 f (w,Xo) (2)

where X0 is the training dataset and W represents the weight.
The weights are adjusted at each iteration using the mini-
batch gradient descent update rule with the learning rate
given in the following equation:

wt+1
= wt

− µ∇wEt
[
f (w)

]
(3)

Convolutional neural network
development

The RiceWeedNet is a 25-layered network with an
image input size of 227 × 227 × 3, which features a
convolutional neural network.

Input layer

ImageInputLayer is the tag given to the input layer.
A convolutional neural network’s input determines the
capacity of the input pictures and stores the images’
unprocessed pixel values. The input for this study is
227× 227× 3 pixels in size.
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TABLE 1 | Model training progress table of AlexNet

Epoch Iteration Time elapsed (hh:mm:ss) Mini-batch accuracy Mini-batch loss Base learning rate

1 1 00:00:20 12.50% 2.1122 0.0010
3 50 00:15:02 92.19% 0.4185 0.0010
5 100 00:29:09 62.50% 0.6478 0.0010
7 150 00:42:46 50.00% 1.4846 0.0010
9 200 00:56:04 45.31% 1.9791 0.0010
11 250 01:10:01 62.50% 3.8347 0.0010
14 300 01:23:46 62.50% 0.4932 0.0010
16 350 01:37:06 57.81% 0.8457 0.0010
18 400 02:33:08 90.63% 0.6101 0.0010
20 450 02:47:03 96.88% 0.1194 0.0010
20 460 02:49:45 90.63% 0.1887 0.0010

The accuracy of the test set is 73.780488%. Elapsed time is 10607.877668 s.

Convolution layer (CL)

Convolution2dLayer is the label for this layer. The neurons
in this layer connect to specific areas of the input pictures or
the layer below the one that produces its outputs.

Batch normalization layer (BNL)

The batch normalization layer has the batch tag.
Normalization Layer: Its function is to improve network
training and reduce the degree to which networks are
initially sensitive.

Rectified linear unit layer (RLUL)

The ReLuLayer tag identifies this layer. After the CL and
BNL, an equation of non-linear modulation, such as a
rectified linear unit (ReLU), is typically utilized at this layer.
Each element is subjected to a cutoff procedure by the ReLU
layer, which keeps the size of the data constant and sets any
data input a little under 0 to 0. This implies

f (x) =
{
x, x ≥ 0
0, x < 0 (4)

Max-pooling layer (MPL)

MaxPooling2dLayer is the name of the layer. In this down-
sampling layer, the maximum and mean layers come after
the fully connected layers, which minimizes the connection
count for the subsequent layers. They do not even learn much
explicitly, but they do cut down on the number of parameters
that must be learned in succeeding layers. Furthermore, they
aid in reducing the fitting problem. A layer that uses max-
pooling returns the highest values from its rectangular input
segments. The pool size parameter determines the size of the
rectangular areas of the maxPoolingLayer.

Fully connected layer (FCL)

FullyConnectedLayer is the label for this layer. This layer is
regarded as a totally coupled stratum since all of the neurons

inside the layer above are connected to the neurons in this
layer. To find the added incentive in the image, this layer
integrates all of the characteristics (local information) that
the preceding layers have collected. The final fully connected
layer incorporates the properties used to classify the images
in classification tasks. The number of classes in the data set
is consequently equal to the output size parameters of the
network’s final, completely associated layer.

Soft max-layer (SML)

The tag for this layer is softmaxLayer. Given that the goal
of this study is to address a problem related to classes. The
very last fully connected layer must be followed by a softmax
function and a learning algorithm. The softmax function is
used to activate the output vector:

yr (x) =
exp (ar (x))∑k
j = 1 (aj (x))

(5)

where 0 ≤ yr ≤ 1 and
∑k

j = 1 yj = 1.

For multi-class classification issues, the output unit
operational amplifier following the final fully connected layer
is known as a sigmoid function:

P (Cr | x, θ) =
P (x, θ | Cr) P (Cr)∑k
j = 1 P

(
x, θ | Cj

)
P
(
Cj
)

=
exp(ar (x, θ))∑k

j = 1 exp(ar (x, θ))
(6)

where 0 ≤ P(Cr | x, θ) = 1 and
∑k

j = 1P
(
Cj | x, θ

)
= 1.

Moreover, ar = In(P(x, θ | Cr) (P(Cr)), P(x, θ | Cr) is the
conditional probability of the sample given class r, and P(Cr)
is the class prior probability.

Classification layer (CsL)

This layer requires that the equivalent softmax layer must
come before it. The network that has been trained uses



10.54646/bijscit.2022.22 13

FIGURE 2 | Training progress graph of AlexNet.

FIGURE 3 | Confusion matrix for AlexNet.

the results from the softmax function at the classification
output layer to classify each input into one of the k mutually
exclusive classes using a 1-of-k coding scheme.

E(θ) = −

n∑
i = 1

k∑
j = 1

tijlnyj (xi, θ) (7)

where tij is the indicator that the ith sample belongs to the
jth class, θ gives the parameter for vector. yj (xi,θ) gives
the output sample i, and here, the value from the softmax
function. Which implies, the likelihood that the network
associates the i th input with class j, P(tj = 1 |xi).

System evaluation

Three metrics, i.e., recognition rate, rejection rate,
and average recognition time, were used to assess
the created system.

Recognition rate

This is the proportion of correctly classified images.
Mathematically, the recognition rate is defined as follows:

Recognition Accuracy (%) =

Total Numbers of Image Recognized Corectly
Total Number of Images

× 100 (8)

Rejection rate

This is the percentage of photos that the algorithm failed
to identify. Rejected photographs can be identified by the
system, making it simple to go back and manually edit them.
Mathematically, the rejection rate is defined as follows:

Rejection Rate (%) =
(
100− Recognition Accuracy

)
(9)

Recognition time

This is the total time (s) taken for the trained model to
recognize the input image.

Incorrectly recognition

Incorrectly Recognition (%) =

Total Numbers of Images Recognized incorectly
Total Number of Images

× 100

(10)

No recognition

No Recognition (%)

=
Total Numbers of Images Not Recognized at all

Total Number of Images
× 100

(11)

https://doi.org/10.54646/bijscit.2022.22
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TABLE 2 | Model training progress table of RiceWeedNet.

Epoch Iteration Time elapsed (hh:mm:ss) Mini-batch accuracy Mini-batch loss Base learning rate

1 1 00:00:32 37.50% 2.3930 0.00001
3 50 00:12:04 96.88% 0.0809 0.00001
5 100 00:23:02 98.44% 0.0466 0.00001
7 150 00:34:06 100.00% 0.0070 0.00001
9 200 00:45:05 100.00% 0.0040 0.00001
11 250 00:55:46 100.00% 0.0014 0.00001
14 300 01:06:29 100.00% 0.0004 0.00001
16 350 01:17:13 100.00% 9.6630e−05 0.00001
18 400 01:27:55 100.00% 1.9782e−05 0.00001
20 450 01:38:40 100.00% 1.1022e−05 0.00001
20 460 01:40:46 100.00% 1.5342e−05 0.00001

Accuracy = 97.713415%.

FIGURE 4 | Training progress graph of RiceWeedNet.

Results

The researcher presents and discusses the study’s
findings in this part.

Model evaluation for AlexNet

With the use of a novel model called RiceWeedNet and the
AlexNet pre-trained network, a transfer learning technique
was applied for this study’s purposes. Using the created
framework, the model was implemented in the MATLAB
R2018a environment (see Figure 1). A total of 2500 training
datasets were divided in half, with 70% going toward training
the model and the remaining 30% going toward accuracy
testing to train the created model. The created model was
trained using 20 epochs at a rate of 50 iterations per epoch
for a total of 460 iterations. Additionally, the tic-toc function
in MATLAB was used to compute the training duration,

FIGURE 5 | Confusion matrix for RiceWeedNet.

which was expected to be 169 min and 45 s (see Table 1
and Figure 2). As a result, the model’s network accuracy in
the last iteration was 90.63%, whereas the test set’s accuracy
was 73.78% (see Table 1). A Confusion Matrix for AlexNet
is shown in Figure 3; this particular table structure permits
visualization of the output of the algorithm.

Model evaluation for RiceWeedNet

Using the created framework, the RiceWeedNet model was
also implemented in the MATLAB R2018a environment (see
Figure 1). A total of 2500 training datasets were divided in
half, with 70% going toward training the model and the other
30% going toward accuracy testing.

The training was carried out over a period of 20 epochs at
a rate of 50 iterations per epoch, for a total of 460 iterations.
Additionally, the training time was predicted to last 100 min
and 46 s using the MATLAB tic-toc function, as shown in
Table 2 and Figure 4, respectively. As a result, the model
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FIGURE 6 | ROC for (a) rice weed recognition system and (b) AlexNet transfer learning.

FIGURE 7 | User interface of the RiceWeedNet detection system.

produces a network accuracy of 100% at the last iteration (see
Table 2), whereas the test set accuracy is 97.71%. Figure 5
shows the confusion matrix for RiceWeedNet and describes
how well the classification system performed. The output
of the classification algorithm is shown and summarized in
the confusion matrix. The receiver operating characteristic
(ROC) curve of Figure 6 shows how well a classification
model performs across all categorization levels for (a) rice
weed recognition system and (b) AlexNet transfer learning.

System design

The system was developed and is known as RiceWeedNet
(the user interface of the RiceWeedNet detection system
is shown in Figure 7). It is a window application
program designed to find weeds in a rice field. The
AlexNet Transfer Learning approach was utilized to train
a pre-trained AlexNet Convolutional Neural Network
for the application, which was created using MATLAB

R2018a. A new CNN RiceWeedNet was also created as a
foundation for comparison.

Discussion of findings

A convolutional neural network was created by this research
to detect weeds on a rice farm. The dataset for this study
was also gathered and utilized to assess the effectiveness of
the system in comparison to a pre-trained network (AlexNet)
that had been altered to fit the generated model’s 25 layers
and three classes. The RiceWeedNet model was found to
have 100% network accuracy in 100 min and 46 s with a test
set accuracy of 97.71%, 0.9776 precision, and 0.9803 recall
value. In a related study, Jiang et al. (20) used AlexNet-
CNN’s deep learning network in the pesticide detection of
postharvest apples. The accuracy of the proposed method
for apple pesticide detection was 99.09%. AlexNet used in
the present study completed the task in 1595 min and 45
s with a network accuracy of 90% and a test set accuracy
of 73.78%. This result is related to the findings by McCool
et al. (21), who reported similar training settings and training
durations utilized for their study on carrots. (22) system
from also made it possible to identify green plants and
diagnose nine different forms of plant illnesses automatically
with a total detection accuracy of 92.5%, 87.4%, 85.0%, and
85.1% when AlexNet+TL, ResNet-18+TL, GoogleNet+TL,
and AlexNet+SVM are used, respectively.

The research team essentially established a comparison
system to examine the effectiveness of two distinct CNN
models used in this study, RiceWeedNet and AlexNet, for
the identification of weeds in a rice field. The system created
a dataset of rice and weed that will be made available
to researchers and the general public. It also created a
framework to classify the datasets into groups that include
rice and weed using both the new RiceWeedNet and the

https://doi.org/10.54646/bijscit.2022.22


16 Ofoegbunam et al.

AlexNet Pre-trained Network on the MATLAB R2018a
platform. Standard metrics, including training time, network
accuracy, number of epoch, number of iterations, recognition
accuracy, precision, and recall, were used to evaluate the
produced system. The aim of this study was to apply image
recognition techniques used by many researchers on various
crops to the identification of weeds in rice.

Conclusion

This type of experimental study is crucial because it will
increase rice farmers’ productivity and let them use fewer
herbicides, which is better for the environment and human
health. As a result, this study provides a deep learning-
oriented rice-weed detection system that achieved 100%
network accuracy in 100 min and 46 s while maintaining
97.71% accuracy for the test set, 0.9776 precision, and
0.9803 recall. The system is viewed as a replacement
for conventional weed detectors in agriculture and opens
up possibilities for the creation of more sophisticated
and intelligent systems. The capacity of the researcher
to create a convolutional neural network model that can
recognize and categorize photos in the least amount of
time with 100% accuracy is the study’s contribution to
knowledge. Additionally, the work has contributed to the
development of a dataset of rice and weeds that may
be utilized by other researchers for further improvement.
The integration of geographic information systems with
this model for other analyses needs to be the subject
of further study.

The use of contemporary technology in agriculture to
optimize production with little human energy or labor
required is a sector that is significantly trailing behind in
Nigeria. ICT is the most important factor in our society
today, so all stakeholders in Nigeria should start thinking
about how to become completely engaged. It is a good idea
to investigate and apply the applications of image processing
and deep learning to object recognition. Farmers are urged to
employ the technique described in this study to simplify the
manual process now used to find weeds on their farmlands.
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