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Using a public dataset of images of maritime vessels provided by Analytics Vidhya, manual annotations were made
on a subsample of images with Roboflow using the ground truth classifications provided by the dataset. YOLOv5,
a prominent open source family of object detection models that comes with an out-of-the-box pre-training on the
Common Objects in Context (COCO) dataset, was used to train on annotations of sub-classifications of maritime
vessels. YOLOv5 provides significant results in detecting a boat. The training, validation, and test set of images
trained YOLOv5 in the cloud using Google Colab. Three of our five subclasses, namely, cruise ships, ROROs (Roll
On Roll Off, typically car carriers), and military ships, have very distinct shapes and features and yielded positive
results. Two of our subclasses, namely, the tanker and cargo ship, have similar characteristics when the cargo
ship is unloaded and not carrying any cargo containers. This yielded interesting misclassifications that could be
improved in future work. Our trained model resulted in the validation metric of mean Average Precision (mAP@0.5)
of 0.932 across all subclassification of ships.
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Introduction

In the military maritime realm, there is a desire to understand
the environment passively without using emitters such as
RADAR and LiDAR. A vessel can keep a low profile and
detect navigational hazards or threats. In the commercial
maritime realm, ships can use images and videos in
conjunction with RADAR to add another layer of confidence
to hazard avoidance. These industries need reliable object
detection using cameras. Hence, this study will explore the
use of electro-optical cameras taking still images to be used in
a dataset to retrain a YOLOv5 model, a deep learning object
detector, on such images and evaluate the performances.

Object detection is a technique for locating instances
of objects in either images or key frames from videos
by leveraging machine learning algorithms with the goal
of replicating recognition intelligence using a computer.

Object detection can be applied to many domains as
long as a sufficient domain-based dataset is available. But,
object detection algorithms must also consider condition
factors applicable to that domain, such as poor weather or
lighting conditions.

To study the application of object detection using still
images and videos, an applicable dataset of maritime images
from Analytics Vidhya (1, 2) was used, and five different
classifications of ships were defined for the algorithm to
detect. This study also takes into consideration various
factors that can affect the results and attempts to improve the
training dataset and algorithmic configurables. A subsample
of images has been annotated using Roboflow (3) and trained
through an existing off-the-shelf object detection algorithm
called YOLOv5 (4).

YOLOv5 was born due to the improvements made
by Jocher (5), who ported YOLOv3’s Darknet weights
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(6) to PyTorch (7). PyTorch is an open-source machine
learning framework that allows users to implement powerful
computational functions that are accelerated with a GPU’s
processing power. YOLOv5 version 6.1 was released on
February 22, 2022, which featured the YOLOv5n model for
ultralight edge devices. At the time of this report, the latest
version, 6.1, was utilized. The YOLOv5s model was used due
to the constraints of using free cloud-based tools to facilitate
our training and detection, as described later in the section
“Methodology.”

This study is organized as follows. The section “Literature
Review” reviews works related to the use of machine learning
techniques on images of maritime ships, specifically with the
YOLO family of algorithms and similar machine learning
algorithms. The section “Methodology” describes the dataset
and methods of pre-processing, annotation, training, and
validation. The section “Results and Discussion” discusses
the results and the key metrics of mAP, precision, recall,
AUC, and F1 scores. Finally, the section “Conclusion and
Future Work” discusses the conclusions and future ideas.

In the literature review, we will compare and contrast
previous works with this study and determine the uniqueness
of the dataset and methodology, as well as increase the
fundamental knowledge on the subject of object detection
and classification. It should be noted that the demand for
advanced video surveillance and perception capability has
been requested by the United States Department of Defense
(DoD). The DoD has set aside millions of dollars to procure
and field innovative technologies from non-traditional
vendors, making this research in-demand and valuable.

Many studies discuss machine learning in the application
of ship classification (8), but to date, none of these works
address the problem with the off-the-shelf application of
YOLOv5 and the dataset from Analytics Vidhya. The
uniqueness of this study is that it applies YOLOv5 to a large
dataset consisting of various types of ships, in addition to the
varying quality of images from multiple viewpoints.

Literature review

Research has been done for ship classification using
alternative algorithms and methods and different datasets.
Kim et al. (9) used a different dataset that includes images and
is focused on the improvement of a preexisting classification
with different defining subclasses of ships including “Boat,”
“Speed Boat,” “Vessel Ship,” “Ferry,” “Kayak,” “Buoy,” “Sail
Boat,” and “Others.” They achieved a mean average precision
(mAP) (0.5) value of 0.898 and an mAP (0.5:0.95) value
of 0.528. Li et al. (8) presented a combination of real-time
ship classification, Ship Detection from Visual Image, and
YOLOv3 to achieve an mAP value of 0.741.

Tang et al. (10) compared different versions of YOLO for
datasets of Synthetic Aperture Radar images and traditional
satellite camera images of ships. While similar in nature

in terms of using YOLO and object detection of ships,
the datasets are quite different in terms of image capture
angle. The dataset chosen for this study, from Analytics
Vidhya, contains much closer images of various horizontal
profiles with five distinct classifications, namely, “Cargo,”
“Military,” “Carrier,” “Cruise,” and “Tankers.” Using YOLOv3,
Liu et al. (11) took steps to improve the algorithm’s accuracy
of large pixel dense satellite images by reducing the original
networks 32 times down-sampling to four times, as well as
using a sliding window method to cut down large images to
many smaller images.

The structure of YOLOv5 can be split into input,
backbone, neck, and prediction. Some research has been
done on creating new backbones, improving existing
backbones (12), or swapping YOLOv5’s backbone for another
existing backbone. Ting et al. (13) swapped the exiting
backbone for Hauawei’s GhostNet (14) and stacked two
of these GhostNets into what they call a Ghostbottlenet.
Using the Ghostbottlenet instead of YOLOv5’s original
backbone, they were able to improve feature extraction
and reduce the overall model size. Zhou et al. (15) also
replaced the original backbone with Mixed Receptive Field
Convolution (MixConv), where MixConv makes use of
multiple convolution kernels to improve feature extraction
by increasing attention to pixel coordinates in horizontal and
vertical channels. Qiao et al. (16) attempted to re-identify
maritime vessels that the model has already seen even at
other orientations, using a Global-and-Local Fusion-based
Multi-view Feature Learning by replacing the backbone with
ResNet-50 for global and local feature extraction.

Orientation recognition is the focus of another study
where the researchers use a single shot detector (SSD) for
both multiclass vessel detection and five defined orientations
(i.e., front, front side, side, backside, and back) (17, 18). SSD
is a feedforward ConvNet that explores the presence of an
object instance in the predefined default bounding boxes,
followed by a non-maximum suppression stage to produce
the final detection. Tang et al. (19) explored the use of an SSD
with hue, saturation, and value pre-processing to improve the
Intersection Over Union. The hue, saturation, and value pre-
processing operation are used to extract regions of interest to
feed to the YOLO network.

There are other studies in the same field that cross
compare different object detection algorithms, such as Faster
R-CNN(20), R-FCN (21), SSD, and EfficientDet (22), while
still attempting to detect maritime vessels. Iancu et al. (23)
found that in small to medium size objects greater than 162
pixels, Faster R-CNN with Inception-Resnet v2 outperforms
the others except in detecting large objects where EfficientDet
does a better job (23). It is interesting to note that all of the
convolutional neural network (CNN) based detectors were
also pre-trained on the COCO (24) dataset, similar to YOLO,
which is also a CNN (23).

The COCO (24) dataset by Microsoft houses 3,30,000
images and 1.5 million object instances, and 80 object



10.54646/bijscit.2023.32 9

categories. The richly annotated dataset contains objects
in their natural context and depicts complex everyday
scenes. The dataset focuses on segmenting individual object
instances rather than what other object recognition datasets
support, such as image classification, object localization, or
segmentation. Since one of the 80 object categories is “boat,”
we can utilize transfer learning for our five sub-classifications
of “boat” since YOLOv5 is pretrained on COCO.

Methodology

Pre-processing

Before this study gets into the explanation of the
implemented methods, it would be beneficial to give
some background on the dataset and some design decisions
and difficulties found while taking the first steps with
the dataset. This dataset of maritime vessels, provided by
Analytics Vidhya (1, 2), came with over 8,000 images that
were already ground truth labeled for the classification of
“Cargo,” “Military,” “Carrier,” “Cruise,” and “Tanker.” While
the images did have a ground truth label, they did not
have individual bounding boxes for labeled objects inside
the image. Specifically, it was found that images of cruise
ships would often have two or more cruise ships in the
frame of the image.

Cargo ship was renamed Container ship, and Carrier ship
was renamed “RORO,” which stands for Roll-On-Roll-Off
ships. ROROs have a very particular shape and size, as shown
in Figure 1.

Labels were renamed to distinctly identify the difference
between a “Carrier” and “Cargo.” Other difficulties with this
dataset were similarities in the images of container ships
and tankers. While annotating and drawing bounding boxes
by hand progressed, it became challenging to determine the
difference between the two, specifically when a container ship
was empty and did not have any containers loaded on the
deck. Some tankers had piping and other mechanical features
on the deck, while some had a flat deck and looked like an
empty cargo container ship.

The data were separated into a training set, validation
set, and testing set, to be used by YOLOv5. Roboflow was
utilized to assist the project in pre-processing the data.
Using Roboflow, there were 1,500 annotated images, dividing
the classifications into 300 annotations per classification.
Controlling the number of annotations evenly boosted the
performance of training YOLOv5. Other Roboflow pre-
processing steps were taken to orient any flipped or rotated
images automatically and also to resize the images to 416
pixels by 416 pixels.

FIGURE 1 | Roll-on-roll-off ship classification example.

Training an object detection model

To train a model on the data, a cloud environment, Google
Colab (25), was utilized. Google Colab offers free GPU
runtime and leverages a python-based Jupyter notebook.
From this environment, you can clone the public Github
repository for YOLOv5 and install all the necessary python
package requirements.

Roboflow’s export to a Jupyter notebook is seamless. There
are two options for online and offline imports to a project
notebook. For an offline configuration, the images and
annotations can be downloaded and placed in a notebook.
Through the internet, Roboflow’s API can be used in a
few lines of auto-generated code to bring in the dataset.
Python, the programming language of choice for data science
engineers, comes loaded with tools for transforming results
into usable graphs and using the trained YOLOv5 model in
action to produce images with classification bounding boxes
and confidence levels as shown in Figure 2.

In the first attempt at training a YOLOv5 model, we passed
the following arguments to the train.py script:

python train.py -img 416 -batch 16 -epochs 150 -
data {dataset.location}/data.yaml -weights yolov5s.pt
-cache

The “img” flag defines the size in pixels of the input images
by length and width. The “batch” flag determines the batch
size, that is, how much can be loaded into memory; this is
dependent on the hardware.

In total, 16 was chosen as a recommended default, but the
YOLOv5 documentation warns not to use small batch sizes
as they can produce poor batchnorm statistics. The “epochs”
flag is the number of complete passes the training dataset
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FIGURE 2 | Container ship classification example.

makes through the algorithm; 150 was a recommended
default. The number of epochs is a crucial parameter to
tweak to look for overfitting or underfitting. Overfitting
negatively impacts the model’s performance and ability to
generalize new data.

The “data” flag is the file location of the training data.
The “weights” flag is the small COCO pre-trained checkpoint
of YOLOv5s.pt. This checkpoint was selected to take
into consideration the cloud-based training environment
duration requirement of free use for less than 24◦h. Lastly,
the “cache” flag was used to cache images for faster training.

Post-processing

Our first attempt at training a custom YOLOv5 model was
with some recommendations for the parameters of train.py.
After viewing some of the charts produced by Tensor-
Flow, it was determined that our model was overfitting.
An undesirable positive slope occurred at the end of the
bounding box regression loss graph (Mean Squared Error)
or box_loss graph. To correct this overfitting problem, the
epochs were lowered from 150 to 100 to reduce the number
of times the training data goes through the algorithm.

Results and discussion

Dataset quality

The dataset was obtained from Analytics Vidhya for the
Game of Deep Learning: Computer Vision Hackathon (1, 2).
It was essential to gather a wide variety of photos with a few
key factors to test the performance of the machine learning
model. The first type of image contained in the dataset is

a simple image of one ship with that ship being the focus
of the image. The second type of image is a single image
containing multiple same classifications of the ship. The third
type of image is a single image containing numerous vessels
of different classifications. The fourth type is an image of a
ship, but it is not the main focus of the photograph. The ship
may be in the background or blend into the environment
more so than in other photographs.

The dataset also contains images both in color and black
and white, as well as blurry images and clear images.
Including all of these types of images in the dataset ensures
that it challenges the machine learning model to predict
classifications that are not inherently obvious and pushes the
limits further of how well the model can predict given less
than ideal images.

Object detection

As mentioned in the section “Methodology,” the machine
learning model was run through Google Colab using
YOLOv5 and Python in a Jupyter notebook. The model
ran 100 epochs and produced images in which it made
predictions on classifications of ships in multiple images.
Some of these images were classified correctly, and some
of them were not. In a few of the predictions, there were
various ships within the images for added complexity to
the model. Figures 1–7 show examples of the algorithm’s
output. The model performs differently on different images
for object detection. It is possible to correctly classify an
object, misclassify a ship, or classify background objects as
a ship, and it can be possible to miss the detection entirely.

Figure 3 shows the model successfully classifying multiple
ships within the same image of type “Cruise Ship,” so it is
understood that the model has the capability to identify more
than one object per image.

Figures 2–4 all show successful classifications of three
different types of ships with images of varying quality. It
can be seen that Figures 2, 3 have a higher confidence in
classification than Figure 4, likely due to the poor image
quality of Figure 4. However, it is important to note that
the model can detect an object even when the image
quality is not ideal.

Figure 5 is an example of the model missing the detection
entirely. It can be seen that there are two cruise ships in the
image, but the model identifies only one.

Figure 6 shows another capability of the model in that
it can identify overlapping ships. In this image, the tanker
was located directly in the foreground of the container ship,
and the model was still able to detect both ships successfully.
Likely the container ship suffers low confidence due to the
model not observing the bow and stern of the container ship,
which are very distinct features.

Finally, Figure 7 shows an example of the model
misclassifying a background object and a ship. In this image,
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FIGURE 3 | Cruise ship classification example.

FIGURE 4 | Military ship classification example.

the model confused a bridge for a tanker, most likely due
to the large towers of the bridge resembling a mast erected
vertically above the hull of a tanker. The false positive of
the large bridge could be mitigated by adding additional
images containing bridges and maritime ships that do not
have bounding boxes containing the bridge. There are a few
aircraft carriers mixed into the dataset, but adding more
would improve precision.

FIGURE 5 | Missing classification example.

FIGURE 6 | Overlay classification example.

Post-processing

As described in the “Post-processing” subsection of the
“Methodology” section, the method of rectifying the model’s
apparent overfitting observed in the box_loss graph was to
reduce the epochs from 150 to 100. As seen in Figure 8, the
data for the box_loss appears to be trending in a healthy
manner and does not indicate overfitting, as seen in the
previous training attempt.

The phenomenon of overfitting occurs when the model has
been trained for too long, becomes too specific to the training
set, and performs poorly with new data. An ideal learning
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FIGURE 7 | Misclassification example.

FIGURE 8 | Validation box loss chart.

curve graph is identified when training and validation loss
decreases to the point of stability.

Performance

The concept of algorithm performance is interpreted as the
quality of results the machine learning model produced.

For this project’s scope, the focus will be on the
model’s performance to accurately determine the correct
classification of ships. To do this, a variety of key
performance indicators are used. The most important of
these indicators is the mAP metric. However, there are an
additional four other metrics worth discussing as a part of
the algorithm results.

The mAP metric achieved for this project was 0.929 at the
0.5 level and 0.598 at the 0.95 level. The mAP metric relies on
the precision, recall, precision-recall curve, and intersection
over union, which is discussed in detail later in the paper.
To give a brief definition of each, intersection over union is
the measure of how much the bounding boxes on the object
overlap. This value will be 1.0 for exactly lined up or 0.0 if
there is no overlap at all.

TABLE 1 | Validation summary results.

Class Images Labels P R mAP@0.5 mAP@0.5:
0.95

All 292 322 0.892 0.902 0.929 0.598
Container 292 69 0.845 0.844 0.920 0.567
Ship Cruise 292 59 0.871 0.913 0.902 0.568
Ship Military 292 65 0.921 0.938 0.961 0.583
Ship RORO 292 60 0.993 1 0.995 0.740
Tanker 292 69 0.830 0.777 0.870 0.532

FIGURE 9 | Precision-recall chart.

Precision is the measure of identifying relevant objects;
recall is the measure of the truth within the bounding boxes.
The mAP metric is the mean of the AP metrics. An AP
metric is the area under the precision-recall curve, shown in
Figure 9. This calculation is shown in Equation (1):

AP =
∑
[Recalls (k)− Recalls (k+ 1)] ∗ Precisions (k)

(1)
The larger the area under the curve (AUC), the higher the
AP, which indicates a better model. Our mAP metric is
higher at the 0.5 Intersection Over Union level, known as the
traditional level, meaning that when there is half overlap over
the union area of the two bounding boxes, the model has an
accuracy of 92.9% as seen in Table 1.

The four other main charts are shown in Figures 9–
12. These figures visualize the key performance indicators.
To better understand these key performance indicators and
interpret the results, it is crucial to first discuss the confusion
matrix in Figure 13 and the four key metrics used in the
calculation of the key performance indicators. The four key
factors used in these equations (with example definitions in
terms of a RORO classification) are as follows:

• True Positive (TP): The ship was classified as a RORO
and it was actually a RORO.

• True Negative (TN): The ship was classified as not a
RORO and it was actually not a RORO.
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FIGURE 10 | Precision chart.

FIGURE 11 | Recall chart.

FIGURE 12 | F1 curve chart.

• False Positive (FP): The ship was classified as a RORO
and it was not actually a RORO.

• False Negative (FN): The ship was classified as not a
RORO and it actually was a RORO.

FIGURE 13 | Confusion matrix.

While the concept of these metrics is essential to
the indicators below, the confusion matrix will help to
understand the performance of the machine learning
model, how the model has made the predictions, and
the area containing the most prevalent errors of the
model predictions.

The confusion matrix in Figure 13 shows the true
classification compared to the predicted classification. It can
visualize where the model is getting confused in classifying
or differentiating between two different classifications. This is
visualized through a two-by-two matrix with one axis being
the actual truth, or ground truth, and the other axis being
the prediction, or the model’s truth. In a perfect situation,
1.00 would be seen across the diagonal from the top left
to the bottom right of the matrix. However, the model is
not perfect. The model gets pretty close to perfect as the
correct classification percentage for each category of ship is
as follows:

• Container ship: 86%
• Cruise ship: 93%
• Military ship: 98%
• RORO: 98%
• Tanker: 72%

In addition to showing the percentage of the algorithm
correctly classified, the breakdown of incorrect classifications
can be seen as well. The most common misclassification
occurred when the algorithm mistook the background of the
image for a cruise ship. Confusion between classifications of
ships arose the most between incorrectly classifying tankers
as container ships 20% of the time.

One of the performance indicators is precision, shown in
Figure 10. Precision measures the accuracy of the predictions
or the percentage of the predictions that are correct. The
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precision can be calculated by dividing the number of
true positives by the summation of true positives and false
positives. This calculation is shown in Equation (2):

TP
TP + FP

(2)

The higher the precision, the more accurate the model was
at predicting the correct classification of vessels. Figure 10
shows precision over confidence. In this case, confidence is
a value between 0.0 and 1.0, which indicates how confident
the model is that the prediction is correct. In general, a
confidence of 0.7 and above is strong, between 0.3 and
0.7 is okay, and below 0.3 is weak and probably not a
good prediction.

Figure 10 shows that as the confidence grows, the
precision grows as well. It is interesting that the precision
grows logarithmically and not linearly with confidence. It
starts with a precision of around 20% when the confidence
is 0.0, then rockets to approximately 75% by a confidence of
0.1. It is evident from this chart that the tanker classification
contains the most variability and is the most incorrectly
classified vessel in this model because its precision over
confidence has the most drastic spikes at a high confidence
value while the other classifications remain somewhat stable.

The second performance indicator is recall, shown in
Figure 11. Recall is an indicator of how well all the positives
(or correct classifications) are identified. This indicator is
calculated by dividing the number of true positives by the
summation of true positives and false negatives.

According to Figure 11, the recall decreases as the
confidence increases. This calculation is shown in Equation
(3):

TP
TP + FN

(3)

The third performance indicator is the precision-recall rate,
shown in Figure 9. A precision-recall (PR) curve plots the
precision values on the y-axis and the recall values on
the x-axis for each classification in the model. Precision is
measured by Eq. (2), and recall is measured by Eq. (3).

It would be ideal to see that the algorithm has both high
recall and high precision, but in most cases, this is not
possible, so there is usually a trade-off between the two
in machine learning algorithms. To analyze this specific
graph, it is known that a good machine learning model
produces a high AUC.

In Figure 9, it can be seen that the RORO classification
has the greatest AUC with a PR value of 0.995. The
tanker classification had the lowest AUC with a PR value
of 0.855. Overall, the results show that on average, of all
classes, the AUC is significant with a PR value of 0.932,
indicating a good result.

Finally, the fourth performance indicator is the F1 score,
shown in Figure 12. The F1 score combines the precision and
recall metrics and is a measure of the accuracy of the dataset.

FIGURE 14 | Validation CLS loss chart.

FIGURE 15 | Validation object loss chart.

Generally, an F1 score above 0.9 is excellent, between 0.8 and
0.9 is good, between 0.5 and 0.8 is okay, and below 0.5 is not
good. In this study, the F1 score is highest at a confidence of
0.433 with an F1 score of 0.89.

This score rating is just bordering the excellent range, but
remains in the good range. One of the factors for this score is
class balancing, in which the goal is to have an even amount
or fairly distributed dataset of the different classification types
contained in the data, and a large amount of them for more
accurate learning.

Validation

The goal of validation is to validate the model’s performance
by how well it correctly predicted the correct classification
of the ship and that the object is accurately detected. There
can be, and are, instances where the model identifies a
background image as some classification of a vessel or
classifies a ship incorrectly. Figures 8, 14, 15 represent the
performance of the validation set. In each of these figures,
it is important to look at the dark orange line, which is
the validation, compared to the faded orange line, which is
the training data.

The validation box loss chart in Figure 8 shows the mean
square error (MSE) of the validation data vs. training data.
MSE depicts how close the regression line is to a set of points
by calculating the distance from the points to the regression
line and squaring the error. You can observe from the graph
that the MSE consistently declines and never trends in the
positive direction. Box loss shows how well the predicted box
overlaps with the validation bounding box.

Figure 14 shows the classification loss or cross-entropy.
Entropy measures the average amount of information needed
to represent a random event drawn from a probability for
a random variable. Cross-entropy is the measure of the
difference between two probability distributions of random
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sets and can be used as a loss function when optimizing
classification models. Figure 14 shows the validation of
the model to classify the object given a set of possible
classifications correctly. Lastly, in Figure 15, the object loss
chart shows binary cross entropy or the ability of the model
to detect an object of interest or not accurately.

In each of these charts, it would be evident if the model was
overfitting or underfitting. If overfitting, the algorithm would
do well on the training dataset but poorly on validation data.
This scenario would visually be identifiable by the validation
line being consistently above the training data line even
though the loss on the training data is low.

Underfitting occurs when the algorithm performs poorly
not only on the validation data, but the training data as well.
It is visually identifiable by looking at the validation charts
if both validation and training data lines are separated, and
the training line is above the validation line. This may mean
that the algorithm is too complex for the given dataset in
comparison to underfitting, where the model is not complex
enough for the given dataset. All three of our validation
charts show healthy loss functions. Table 1 shows training
and validation results, showing precision, recall, and mAP.
The standard for comparing object detectors is mAP, and
for our classifications, we are pleased with the results and
will compare them with other related projects in the section
“Conclusion.”

Conclusion and future work

With the methods chosen, using a public dataset, annotating
images from the dataset with Roboflow, and training an
off-the-shelf machine learning algorithm YOLOv5 in a
cloud-based environment, the application of commercial and
military passive perception of maritime ships is achievable.
Object detection and classification of maritime ships have
many options of machine learning algorithms but our results
prove that YOLOv5 is a competitive CNN, as indicated by our
mAP value of 0.929 and healthy validation curves presented
in the section “Validation.”

We found that our custom-trained model using the
Analytics Vidhya dataset performed better in terms of mAP
of different Intersection Over Union thresholds from 0.5
to 0.95 in 0.05 increment steps compared to the related
works of Kim et al. (9), where their model resulted in a
mAP@0.5:0.95 of 0.528 and our model performed at 0.598.
Another comparison is of the related works of Li et al. (8)
using YOLOv3 to achieve an mAP value of 0.741, and our
custom YOLOv5 model produced an mAP value of 0.929.
Iancu et al. (23) at best produced an mAP value of 55.48%
while cross-comparing four other competitors to YOLOv5
compared to our model’s mAP of 92.9%.

In future work, to rectify the misclassifications of cargo
container ships and tankers with similar features, additional
images with varying characteristics would have to be added

to the datasets. The algorithm would benefit from annotating
images where a container ship may be empty and the same for
tankers and various stages depending on cargo load. Other
future work that could be useful to commercial and military
customers is estimating the distance and bearing of the target
after properly detecting and classifying an object of interest.

We plan to investigate improving our results by increasing
the number of hand-annotated images in our training and
validation datasets. Increasing the number of images per
classification will also further refine our results. There is also
news of future versions of YOLOv6 and YOLOv7 that could
be utilized, as well as changing to larger pre-trained weights
to compare results. With the growing fleet of commercial
and military ships, there is demand for research like this
study, and we think the future will use cameras and machine
learning as a passive perception system for maritime ships.
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