
BOHR International Journal of Smart Computing
and Information Technology

2023, Vol. 4, No. 1, pp. 55–61
DOI: 10.54646/bijscit.2023.37

www.bohrpub.com

RESEARCH

Artificial neural network with the Levenberg-Marquardt
algorithm for numerical solution of two-dimension Poisson’s
equation

Anup Kumar Thander1* and Dwaipayan Bhowmik2

1Department of Applied Science and Humanities Guru Nanak Institute of Technology, Kolkata, India
2Department of Computer Science and Engineering Dr. Sudhir Chandra Sur Institute of Technology and Sports Complex,
Kolkata, India

*Correspondence:
Anup Kumar Thander,
anup.thander@gnit.ac.in

Received: 13 October 2023; Accepted: 21 October 2023; Published: 15 December 2023

This study introduces an Artificial Neural Network (ANN) framework to address the two-dimensional Poisson’s
equation within a rectangular domain. It places a focus on the training process of a neural network with three
layers, incorporating hidden neurons. The feedforward ANN is trained using MATLAB, which calculates weights for
all neurons within the network structure. These acquired weights are subsequently applied in the trained network
model to make predictions for the desired output of a specific partial differential equation. The architecture of the
ANN consists of three layers: one input layer, one hidden layer, and one output layer. In this study, we specifically
employ an ANN configuration with 50 hidden neurons. The training process is executed using MATLAB, utilizing the
Levenberg–Marquardt algorithm (LMA) for optimization. Furthermore, the study encompasses the development of
surface and contour plots that illustrate the computational solution of the partial differential equation. Additionally,
error functions are graphed to assess the effectiveness of the ANN model.

Keywords: artificial neural network, Levenberg–Marquardt algorithm, Poisson’s equation, optimization algorithms,
numerical solution

1. Introduction

Differential equations hold fundamental importance in
modeling a wide range of scientific issues across disciplines
like physics, chemistry, biology, and economics (1). While
analytical tools can be used to formulate equations based
on well-established principles of physics, discovering closed-
form solutions is often a challenging, if not impossible, task
(1–23). As a result, various methods have been proposed
in the literature to address the solution of these equations.
Several key numerical techniques (1, 13) employed in solving
partial differential equations (PDEs) include the Finite
Difference Method (FDM) (1, 8, 11, 13), the Finite Element
Method (FEM) (1, 11), the Finite Volume Method (FVM),
and the Boundary Element Method (BEM). These methods

typically require discretizing the problem domain into finite
grid points (8).

In contrast, neural networks can be seen as approaches
for approximating strategies to solve differential equations.
The solutions obtained through neural networks are
differentiable, expressed in a closed analytical format (1),
and easily usable in subsequent computations. This sets
them apart from many other techniques, which often yield
discrete solutions with limited differentiability. Several recent
research articles (1–7, 9–18, 20–23) and even a book have
been dedicated to this topic. The core aim of this study
is to employ a Feed-Forward neural network to solve
Poisson’s equation within a specific domain. Subsequently,
the numerical solution obtained through this neural network
will be compared with the exact solution. This investigation
aims to assess the efficacy of neural networks in solving such

55

www.bohrpub.com
https://doi.org/10.54646/bijscit.2023.37
https://www.bohrpub.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

56 Thander and Bhowmik

problems and understand how they perform in comparison
to traditional numerical methods.

The paper is structured as the following sections: Section
II covers the details of the partial differential equation
and domain discretization. In Section III, an overview
of the feedforward neural network and its properties is
presented. Section IV delves into the discussion of the
Levenberg–Marquardt Algorithm (LMA). Section V provides
a comprehensive presentation of detailed numerical results.
Finally, Section VI offers concluding remarks.

2. The Poisson equation within a
rectangular region

Two-dimensional Poisson’s Equation within rectangular
domain where x ∈ [0, A] and y ∈ [0, B].

Such that

∂
2
ν

∂x2 +
∂

2
ν

∂y2 = f (x, y) (1)

Here the forcing function is,

f (x, y) = x(x− A)+ y(y− B)

We prescribe Dirichlet Boundary Conditions on all four sides
of the rectangle as

ν(x, 0) = 0, ν(x, A) = 0, ∀x ∈ (0, A)

ν(0, y) = 0, ν(A, y) = 0, ∀x ∈ (0, B)

For numerical resolution of Equation (1), we have
decomposed the rectangular solution region into mesh
points (11, 13). Here hx and hy are step length along the x
and y directions, respectively. Let (xi, yj) be a mesh point
in the region. Then xi = x0 + ihx, yj = y0 + jhy. We
have considered (x0, y0) as (0,0). A = 3, B = 2, hx = 0.03,
hy = 0.02

The exact solution of the PDE mentioned in equation (1)
is,

νexact =
x(A− x)y(B− y)

2

This exact solution is used to compute the error function
(||vexact − vann||p) numerically in Lpspace (p = 2). Here vann
is the solution of equation (1) using ANN.

3. Feed-forward neural network

One of the two primary types of artificial neural networks,
a feedforward neural network, is distinguished by the way
information is processed and sent between its various
layers. Feedforward neural networks are structured as a

sequence of interconnected layers (1–7). The initial layer
is connected to the network’s input, and each subsequent
layer is linked to the one preceding it. Ultimately, the
last layer generates the network’s output. These networks
are versatile and can be applied to map inputs to outputs
across various problem domains. A feedforward neural
network, particularly one equipped with a single hidden layer
containing an adequate number of neurons, possesses the
capability to approximate and fit any finite input-output
mapping problem. In essence, it can adapt to a wide range
of tasks where there is a need to transform inputs into
corresponding outputs. Additionally, specialized variations
of feedforward networks are available, including networks
designed for fitting purposes and those tailored for pattern
recognition tasks (6, 7, 17, 18). These variations allow for the
network’s adaptation to specific problem types, enhancing its
applicability across various domains.

Equation (2) provides a mathematical representation that
describes an individual neuron within Feed Forward neural
network architecture in general sense.

al
k =

Nl−1∑
p=1

wl
k,pXp + bl

k,0, k = 1, 2, , Nl

yl
k = Fl(al

k)

(2)

Here, Nl represents the quantity of neurons in the l layer
(14). Every concealed neuron, labeled as “k,” is supplied with
the outcome of every input neuron “p” originating from
the input layer, which is scaled by weight (wl

k,p). The total
of weighted inputs is then fed into activation function Fl
to determine the output of concealed layer neuron. This
information is subsequently moved ahead to the output layer,
and a comparable process involving weighted sums takes
place for each output neuron. The term bl

k,0 signifies the bias
of the neuron indexed as “k” in the “lth” layer. Bias values
are incorporated to introduce a degree of randomness to the
initial conditions, which ultimately enhances the network’s
likelihood of reaching convergence. In Equation (3), the
weight matrix is defined as the connector between the (“l −
1“)-th layer and the “lth” layer (14).

ωl
=

w1,1 w1,2 w1,l−1
w2,1 w2,2 w2,l−1
.....

wl,1 wl,2 wl,l−1

lX(l−1)

(3)

4. The Levenberg–Marquardt
algorithm (LMA)

The Levenberg–Marquardt algorithm (LMA) (1–6, 14, 16)
is a widely used trust region method designed to locate a
minimum of a function, be it linear or non-linear, within
a parameter space. It essentially builds an internal model

10.54646/bijscit.2023.37 57

of the objective function, often quadratic, to establish a
trusted region. When a good fit is achieved, the trust region
expands. However, like many numerical techniques, LMA
can be sensitive to the initial parameter values. In traditional
implementations of the Levenberg–Marquardt method, finite
differences are employed to approximate the Jacobian matrix.
Within the realm of artificial neural networks, this method is
well-suited for training small to medium-sized problems.

It combines elements from both gradient descent and
Gauss–Newton methods, resulting in an adaptive and reliable
optimization tool. LMA often assures successful problem-
solving due to its adaptable nature. However, when we
represent the back-propagation (BP) method as gradient
descent, the algorithm tends to slow down and may not
achieve an optimal solution. Conversely, if we express BP
as Gauss–Newton, the algorithm substantially increases the
likelihood of reaching an optimal solution. Within this
algorithm, an approximation for calculating the Hessian
matrix (Ha) is presented in Eqn (4), while the gradient (G)
computation is expressed in Eqn (5).

Ha = Jt
aJa (4)

G = Jt
a Er (5)

Here, the Jacobian matrix is denoted as “Ja” and “Er”
represents a vector representing the network’s error. In
this context, the Levenberg–Marquardt Algorithm (LMA)
exhibits behavior akin to the Newton method. This can be
articulated via the subsequent convergence procedure:

Zk+1 = Zk −
[
Jt
aJa + µI

]−1 Jt
a Er (6)

In this context, “Zk+1” denotes a new weight value, which is
computed by applying the gradient function to the current
weight “Zk” using the Newton algorithm. Here I is the
identity matrix and µ is the learning factor.

Notably, it can successfully converge even when the error
landscape is notably more intricate than a straightforward
quadratic scenario. Core concept behind the Levenberg–
Marquardt algorithm involves a hybrid training approach:
in regions with intricate curvature, the steepest descent
technique is employed until the local curvature is suitable
for a quadratic estimation. Subsequently, this transition leads
to an approximation akin to the Gauss–Newton algorithm,
notably expediting the convergence.

5. Design and training ANN

Training process of an ANN involves adjusting weights and
biases based on input data to reduce the discrepancy between
the network’s outputs and the intended target results. For
comprehensive overview of neural networks, please refer to
(12, 14). To train a multi-layer ANN, the Backpropagation
(BP) algorithm is commonly utilized to iteratively update the

weights and biases. Precision of ANN heavily depends on the
availability of substantial training dataset.

Typically, the training data are segmented into three
separate parts: training, validation, and testing sets. Each of
these divisions is utilized separately to assess the training’s
effectiveness. This approach allows for the assessment of the
entire dataset’s training results and facilitates comparisons
between various training algorithms and ANN architectures.

In MATLAB, we have generated a substantial dataset
consisting of 100 × 100 samples for solving Poisson’s
equation. Throughout the training phase, these samples
are categorized into three distinct subsets: Seventy percent
is designated for training, fifteen percent is set aside for
validation, and the remaining fifteen percent is reserved
for testing. Training of the ANN is conducted using the
Levenberg–Marquardt algorithm.

We have completed three training cycles for each network
configuration using this method, with each training cycle
consisting of 1,000 epochs (14). “Epoch” denotes the
frequency of occurrences that all the training data samples
are utilized once for updating the network’s weights.

Figure 1 illustrates the artificial neural network
architecture designed for the numerical solution of the
partial differential equation outlined in Eqn (1).

Figures 2 and 3 depict the surface and contour plots,
respectively, showcasing the numerical solution obtained
using the current method for the partial differential equation.

The evaluation of the network training’s effectiveness is
done by quantifying the discrepancy between the computed
output (ynn) of the neural network and the intended target
output for training (yt). In essence, we set a threshold error
value that is deemed sufficiently small for us to consider
the output with precision. The assessment of the network
training operation depends on the speed and efficiency with
which this error approaches the predefined cutoff point.
Usually, the most widely employed approach for measuring
the output error involves Mean Squared Error (MSE), as
shown in equations (7, 14).

MSE =
1
N

N∑
i

(ynn
i − yt

i)
2 (7)

Here, N denotes the quantity of outputs.
In the MATLAB simulation environment, we use 64-

bit floating-point data representation to represent weights,
biases, and training data within the ANN model.

Figure 4 through Figure 5 display training performance
results of the Levenberg–Marquardt algorithm (LMA).

In Figure 4, we observe the performance curve where
MSE decreases as the number of epochs increases. It is
noteworthy that the error in the test set and the error in the
validation set show analogous patterns. Importantly, there is
no prominent overfitting issue observed up to epoch 1000,
which corresponds to the point where the best validation
performance is achieved, and the MSE reaches a remarkably

https://doi.org/10.54646/bijscit.2023.37

58 Thander and Bhowmik

FIGURE 1 | ANN Architecture with 50 hidden layers for the PDE.

FIGURE 2 | Surface plot of solution of the PDE.

FIGURE 3 | Contour plot of solution of the PDE.

low value of 3.4856e-11. Figure 6, which displays the
gradient plot, offers insights into the optimization techniques
employed to attain global solutions.

In Figure 7, we have an error histogram divided into
20 bins within the ANN model, representing the training,

FIGURE 4 | Mean Squared Error (MSE) values for different Epochs.

validation (check), and test data. The errors are determined
by subtracting the predicted output values from the actual
target values for each specimen. In this figure, the yellow
line serves as a reference for zero error, and we can observe
that there are 175 instances in the training phase that achieve
these zero errors.

In Figure 5, we depict the connection between the
measured target values and the predicted output values,
separately for both the training and test phases. R-squared
(R2) is a statistical metric that quantifies the proximity of the
data points to the fitted regression line. Across all four sub-
figures, we observe that the model yields favorable results, as
evidenced by the R values. It is noteworthy that in Figure 5,
the values for the slope (m) and intercept (b) are roughly
1 and 0, respectively, across all cases, indicating a strong
fit. Furthermore, the R-value consistently hovers around
100%, signifying excellent overall performance for the entire
dataset, as depicted in Figure 5 across all scenarios.

By plotting the discrepancy between the computed
solution and the analytical solution, we can find that the error
falls within range of a specific order 10−6.

10.54646/bijscit.2023.37 59

FIGURE 5 | Neural Network Training Regression Analysis.

FIGURE 6 | Neural Network Training State at different epochs.

https://doi.org/10.54646/bijscit.2023.37

60 Thander and Bhowmik

FIGURE 7 | Neural Network Training Error Histogram with 20 bins.

FIGURE 8 | A 3-dimensional surface representation of the error
function for the PDE.

Figures 8 and 9 display the surface and contour plots of the
error function associated with the PDE. This error function
is computed in Euclidean space, comparing the analytical
solution of the PDE with the numerical solution obtained
using the current method.

Liu et al. (23) employed a similar approach to obtain a
numerical solution for elliptic partial differential equations
(PDEs) using an artificial neural network (ANN)-based radial
basis function (RBF) collocation method. In their approach,
the training data encompass the prescribed boundary values
of the dependent variable and the radial distances between
exterior fictitious sources and the boundary points of the
solution domain. This technique is suitable when dealing
with Dirichlet boundary conditions.

FIGURE 9 | A contour map depicting the error function for the
solution of the PDE.

In contrast, our method is versatile, as it can handle both
Dirichlet and Neumann boundary conditions. Nonetheless,
a drawback of our method involves the necessity for
discretizing the solution domain, a requirement that differs
from Liu et al.’s approach (23). Furthermore, our proposed
method has limitations when it comes to addressing elliptic
PDEs with complex geometries where employing finite-
difference meshes with a uniform grid size is unfeasible.

6. Conclusion

This paper is centered on the development and refinement
of a specialized Artificial Neural Network (ANN) design

10.54646/bijscit.2023.37 61

for addressing Poisson’s equation. In particular, a 3-layer
ANN structure was trained using optimization techniques,
including the Levenberg–Marquardt algorithm within the
MATLAB environment. Notably, the hidden layer of the
ANN consisted of 50 neurons. The numerical findings
demonstrate that this ANN-based method can achieve an
error below a certain threshold. As part of future research
endeavors, our aim is to extend this work to address the
numerical solution of the Helmholtz wave equation within
the context of specific rib-structured waveguides, utilizing
artificial neural networks as a promising approach.

References

1. Yadav N, Yadav A, Kumar M. An Introduction to Neural Network
Methods for Differential Equations. Springer Briefs in Applied
Sciences and Technology: Computational Intelligence. Berlin: Springer
(2015).

2. Jiang Z, Jiang J, Yao Q, Yang G. A neural network-based PDE solving
algorithm with high precision. Sci Rep. (2023) 13:4479.

3. Althubiti S, Kumar M, Goswami P, Kumar K. Artificial neural network
for solving the nonlinear singular fractional differential equations. Appl
Math Sci Eng. (2023) 31:2187389.

4. Basir S, Senocak I. Physics and equality constrained artificial neural
networks: application to forward and inverse problems with multi-
fidelity data fusion. J Comput Phys. (2022) 463:111301.

5. Seo J. A pretraining domain decomposition method using artificial
neural networks to solve elliptic PDE boundary value problems. Sci Rep.
(2022) 12:13939.

6. Sun Y, Zhang L, Schaeffer H. NeuPDE: Neural Network Based Ordinary
and Partial Differential Equations for Modeling Time-Dependent Data.
Proc Mach Learn Res. (2020) 107:352–72.

7. Blechschmidt J, Ernst O. Three ways to solve partial differential
equations with neural networks — A review. GAMM-Mitteilungen.
(2021) 44:e202100006.

8. Thander AK, Bhattacharyya S. Optical confinement study of different
semiconductor rib wave guides using higher order compact finite
difference method. Optik. (2016) 127:2116–20.

9. Li Y, Hu X. Artificial neural network approximations of Cauchy inverse
problem for linear PDEs. Appl Math Comput. (2022) 414:126678.

10. Bhattacharya K, Hosseini B, Kovachki NB, Stuart AM. Model reduction
and neural networks for parametric PDEs. SMAI J Comput Math. (2021)
7:121–57.

11. Thander AK, Bhattacharyya S. Study of optical modal index for
semiconductor rib wave guides using higher order compact finite
difference method. Optik. (2017) 131:775–84.

12. Zhang L. Artificial neural networks model design of Lorenz chaotic
system for EEG pattern recognition and prediction. Proceedings of the
2017 IEEE Life Sciences Conference (LSC). London: (2017).

13. Thander AK, Mandal G. Optical waveguide analysis using alternative
direction implicit (ADI) method in combination with successive over-
relaxation (SOR) algorithm. J Optics. (2023).

14. Zhang L. Artificial Neural Network model design and topology analysis
for FPGA implementation of Lorenz chaotic generator. Proceedings of
the 2017 IEEE 30th Canadian Conference on Electrical and Computer
Engineering (CCECE). New York, NY (2017).

15. Yadav AK, Chandel SS. Artificial neural network based prediction of
solar radiation for Indian Stations. Int J Comput Applic. (2012) 50:975–
8887.

16. Szczuka M, Slezak D. Feedforward neural networks for compound
signals. Theor Comput Sci. (2011) 412:5960–73.

17. Sunny J, Schmitz J, Zhang L. Artificial neural network modelling of
Rossler’s and Chua’s chaotic systems. Proceedings of the 2018 IEEE
Canadian Conference on Electrical & Computer Engineering (CCECE).
New York, NY (2018).

18. Zhang L. Chaotic system design based on recurrent artificial neural
network for the simulation of EEG Time Series. Int J Cogn Inform Natl
Intell. (2019) 13:103.

19. Bhattacharyya S, Thander A. Study of H-field using higher-order
compact (HOC) finite difference method (FDM) in semiconductor rib
waveguide structure. J Optics. (2019) 48:345–56.

20. Dua V, Dua P. A simultaneous approach for parameter estimation of a
system of ordinary differential equations, using artificial neural network
approximation. Ind Eng Chem Res. (2012) 51:1809–14.

21. Dua V. An artificial neural network approximation-based
decomposition approach for parameter estimation of system of
ordinary differential equations. Comput Chem Eng. (2011) 35:545–53.

22. Pratama DA, Bakar MA, Ismail NB, Mashuri M. ANN-based methods
for solving partial differential equations: a survey. Arab J Basic Appl Sci.
(2022) 29:233–48.

23. Liu C, Ku C. A novel ANN-based radial basis function collocation
method for solving elliptic boundary value problems. Mathematics.
(2023) 11:3935.

https://doi.org/10.54646/bijscit.2023.37

	Artificial neural network with the Levenberg-Marquardt algorithm for numerical solution of two-dimension Poisson's equation
	1. Introduction
	2. The Poisson equation within a rectangular region
	3. Feed-forward neural network
	4. The Levenberg–Marquardt algorithm (LMA)
	5. Design and training ANN
	6. Conclusion
	References

