
BOHR International Journal of Smart Computing
and Information Technology

2025, Vol. 6, No. 1, pp. 12–17
DOI: 10.54646/bijscit.2025.47

www.bohrpub.com

ORIGINAL RESEARCH

A Comprehensive Study of MATLAB Optimization Toolbox
Solvers for Nonlinear Constraints and Objective Functions

Anup Kumar Thander1*† and Dwaipayan Bhowmik2

1Department of Applied Science and Humanities, Guru Nanak Institute of Technology, Kolkata, India
2Department of Computer Science and Engineering, Dr. Sudhir Chandra Sur Institute of Technology and Sports Complex,
Kolkata, India

*Correspondence:
Anup Kumar Thander,
anup.thander@gnit.ac.in
†ORCID:
Anup Kumar Thander,
0000-0002-6282-7076

Received: 15 January 2025; Accepted: 24 January 2025; Published: 12 February 2025

In this paper, four different solvers available in the optimization toolbox of MATLAB for nonlinear constraints and
objective functions have been discussed. Among these solvers, numerical comparisons have been made using
CPUTIME as the parameter. The MATLAB solvers described in this study have been applied to obtain the global
optimum values of Rosenbrock’s banana functions in multi-dimensions. Additionally, graphical analysis is provided
for a visual illustration of the convergence of the optimal solution of Rosenbrock’s function.

Keywords: MATLAB solvers, nonlinear constraints, CPUTIME, objective functions, optimal solutions

Introduction

Optimization (1–10) is a systematic technique which aims
at locating better solutions, answers, or designs not easily
perceptible by human intuition or trial and error. It is
known as the skill of making things better. Optimization
has two branches: theoretical and computational. Theoretical
optimization helps in creating new methods for optimization
and assessing their performance. However, computational
implementation is what matters most to apply optimization
successfully in real-world situations.

MATLAB is a favored calculative designing and scripting
utility that offers a good and clear optimization berth. Its
favor comes from its aptitude and wide use in engineering
plus other areas. MATLAB Toolboxes (9) are groups of
functions that help with studying and making new things in
many tech spaces. They give easy but strong tools that can
be reached using simple commands or visual screens. Many
uses are backed by these toolboxes, which can easily fit into
MATLAB programs.

This research will revolve around the use of MATLAB
Toolboxes based on the optimization. It will consider four
different types. To offer solvers such as fminsearch, fmincon,
fminunc, and lsqnonlin, these toolboxes are evaluated
for nonlinear Rosenbrock’s banana functions. Numerical
comparisons are made taking into account the time taken
by each solver in terms of computational time (CPUTIME)
(11, 12) as it directly reflects the measurement of efficiency of
computations: number of iterations, complexity of algorithm,
and performance of hardware. Any performance aspect
like number of iterations, memory consumed, etc., is not
primary in this case, taking a secondary role due to
wide-ranging costs per iteration and scientific resource
availability. Here optimal solutions for multidimensional
Rosenbrock’s banana functions are obtained through these
MATLAB solvers. Convergence of optimal solutions will
also be graphically demonstrated. All scientific computation
was done in MATLAB because of its extensive library of
toolboxes, inbuilt prototyping environment, and advanced
visualization tools. Community support is huge, and their
integration with languages surges the scale of work that

12

www.bohrpub.com
https://doi.org/10.54646/bijscit.2025.47
https://www.bohrpub.com
https://orcid.org/0000-0002-6282-7076
https://creativecommons.org/licenses/by/4.0/

10.54646/bijscit.2025.47 13

one can perform with MATLAB. These backings make it a
suitable platform for advancing and analyzing optimization
problems in research.

In short, this paper deals with MATLAB Toolboxes
use in optimizing problems. It compares different solvers
in the Optimization Toolbox. It is also about nonlinear
Rosenbrock’s banana functions, and the paper provides
computational time and numerical comparisons, as well as
graphs of convergence for optimal solutions.

Different types of optimization
solvers

To calculate the minimum value of a function in a bounded
interval, MATLAB offers the solver fminbnd. For nonlinear
constraint problems with objective functions, the solver
fgoalattain is the right choice. On problems that have
linear constraints, goals, and integer variables, we use the
solver intlinprog. Solver lsqnonneg solves linear least-squares
problems in a nonnegative way (13).

fminsearch is used to search for the best solution of
an unsupervised problem. This method utilizes a basic
simplex algorithm based on Nelder and Mead (14), which
is a geometric search method that does not make use of
derivatives of the main objective function. The iterative
update of the simplex allows for functional optimization.
It employs four geometrical transformations—reflection,
expansion, contraction, and shrinkage—to converge on a
minimum point. This derivative-free method adapts based
on function evaluations. On other side, the fminunc function
is considered for unconstrained problems and utilizes a
derivative-based algorithm. It endeavors to approximate both
the first derivative and the Hessian matrix, which represents
the second derivatives. It is recommended to use fminunc for
improved efficiency and faster convergence to the optimal
solution compared to fminsearch (9). When a gradient is
provided, fminunc requires a fewer number of iterations
(see (15)). The “trust-region” algorithm within fminunc is
often faster and consumes less memory compared to the
“quasi-newton” algorithm (11–13, 16–19).

The preferred solver for nonlinear sum of squares
problems is lsqnonlin. It offers higher efficiency compared
to fminunc, particularly when a gradient is not provided.
Instead of expressing the objective as a sum of squares,
lsqnonlin expects the internally squared and summed vector.
The optimization process and other aspects can be controlled
by specifying options using optimset.

To summarize, MATLAB provides a range of solvers
for different optimization scenarios. The appropriate
solver depends on the specific problem characteristics and
requirements. The solvers mentioned, such as fminbnd,
fgoalattain, intlinprog, lsqnonneg, fminsearch, fminunc, and
lsqnonlin, cater to various optimization needs, including

constrained and unconstrained problems with different
objectives and constraints (9, 20).

Rosenbrock’s banana functions

Now, the Rosenbrock’s banana function (9) is one of the most
common non-convex functions in optimization. It is used
as a benchmark problem for testing various optimization
techniques. The function is described mathematically as
follows:

f
(
x, y

)
= (a− x)2

+ b
(
y− x2)2 (1)

Here the parameters a and b command the shape of the
function and its optimization difficulty. Changing a shift, the
valley left or right. b controls the steepness and curvature
of the banana-shaped valley. Higher values for b mean
that the function is even more ill-conditioned; thus, the
valley narrows and elongates. Conversely, a small value for
b implies it is generally easy to optimize the function. An
increase in the origins the minimum to shift towards the
right. With respect to function b, the ability to optimize
this function decreases because the valley becomes thinner.
Due to its prominence, the Rosenbrock’s function serves as
a benchmark problem for researchers and practitioners to
compare the performance of various optimization algorithms
when facing non-convex problems. The banana function of
Rosenbrock’s helps us compare the performance of different
algorithms and analyze their convergence properties and
computational efficiency (9).

The Rosenbrock’s banana function has a global minimum
at (x,y) = (a,a2), where f (x,y) is equal to 0. In typical
scenarios, parameters are often set as a = 1 and b = 100.
It’s worth noting that in a special case, the function becomes
symmetric when a = 0, and the origin (0, 0) is where the
optimum point is situated. Consider a problem with two
variants. The first variant involves the summation of N/2
uncoupled two-dimensional Rosenbrock’s problems. This
particular variant [see Equation (2)] is applicable only when
N is an even number.

f (x1, x2, x3, , xN)

=

N/2∑
i=1

[k(x2
2i−1 − x2i)

2
+ (x2i−1 − 1)2

]. (2)

N is the dimension which decides the number of terms
related to one another. More difficult optimization problems
are obtained by increasing the number N. The parameter k
scales the difficulty of optimization. A higher k generated
a more ill-conditioned optimization function possessing a
valley surface with a quite narrow curvature. The value of k is
generally set to 100.

The solutions to this version are predictably
straightforward.

https://doi.org/10.54646/bijscit.2025.47

14 Thander and Bhowmik

FIGURE 1 | Three-dimensional surface plot of Rosenbrock’s function for k = 100, showing a narrow curved valley.

Another, more complex variation is

f (X) =

N−1∑
i = 1

[
k
(
xi+1 − xi2

)2
+ (1− xi)2

]
where X = (x1, x2, , xN) ∈ RN (3)

k is constant in both cases.
The second variant exhibits specific behavior depending

on the value of N. For N = 3, it has exactly one optimum
point (minimum) located at (1, 1, 1). For N ranging from
4 to 7 (both are inclusive), there are two minima: a global
minimum at (1, 1, . . .,1) and a local optimum close to
x̂ = (−1, 1, . . . , 1). These minima are determined by
establishing a rational function of x by setting function’s
gradient to zero. To analyze the roots of the rational function,
exact polynomial expressions can be derived for small values
ofN. Sturm’s theory can then be employed to find the number
of real roots within the range of |xi| < 2.4. However, as
N becomes larger, this approach becomes less effective due
to the size of the coefficients involved. The Rosenbrock’s
function can be optimized efficiently by employing an
adaptive coordinate system, eliminating the need for gradient
information or local approximation models, unlike many
derivative-free optimizers. Here all four MATLAB solvers
(fminsearch, fmincon, fminunc, and lsqnonlin) are tested for
finding the optimal solution of Rosenbrock’s function in such
a way that the highest number of iterative steps is n = 103

with precision ε = 1 × 10−10, δ = 1 × 10−10. These are
standard in any optimization study which ensures a balance
between accuracy and efficiency. Our computer programs
use the following halting conditions to ensure efficient and

FIGURE 2 | Two-dimensional contour plot of Rosenbrock’s function
for k = 100, highlighting the steep walls and flat valley.

effective program execution (6, 7, 18).

||xi+1 − xi|| < ε, (4)
||f (xi+1)|| < δ (5)

Also, it must be mentioned that all the solvers are used
here in a system with the configuration: Intel(R) Core(TM)
i5-4200U CPU @ 2.30 MHz.

Figure 1 showcases a surface plot of two-dimensional
Rosenbrock’s function with k = 100, while Figure 2 displays
a contour plot of the same function. The surface plot and
contour plot of Rosenbrock’s function provide insightful
visualizations of its complex landscape, highlighting the
challenging optimization characteristics of the function.
These plots are instrumental in studying and evaluating
optimization algorithms, aiding in the development of

10.54646/bijscit.2025.47 15

FIGURE 3 | Convergence of optimal solution of 3D Rosenbrock’s
banana function using MATLAB solver fminsearch, taking x0 =

0, y0 = 0, z0 = 0, k = 100.

TABLE 1 | Numerical comparison of CPUTIME to find optimal
solution by different MATLAB solvers for different values of k.

fminsearch fminunc lsqnonlin

κ CPUTIME CPUTIME CPUTIME
05 0.6864044000 0.2340015000 0.0156001000
10 0.7644049000 0.2808018000 0.0312002000
20 0.9984064000 0.2808017999 0.0468002999
30 0.9516061000 0.2496016000 0.0780004999
40 1.0140065000 0.2964019000 0.0468002999
50 0.9828063000 0.3120020000 0.0312002000
100 1.2792081999 0.3276021000 0.0780004999
200 1.3884088999 0.2964018999 0.0780005000

efficient strategies to solve optimization problems. The
contour plot shows the thinner curved valley, showing
difficulty in convergence. The surface plot displays the
steep walls and flat valley, highlighting why gradient-based
methods struggle.

In Figure 3, we observe the convergence of the optimal
solution for a three-dimensional Rosenbrock’s function
(f (x, y, z) = k(y− x2)2

+ (1− x)2
+ k(z − y2)2

+ (1− y)2)

using the MATLAB solver “fminsearch” with k = 100. The
convergence behavior shown in Figure 3 reaffirms the power
of using “fminsearch” solver for optimizing Rosenbrock’s
function. With increased iterations, the solver progressively
approaches and finds an improved and accurate optimal
solution. This data helps in analyzing the algorithms on
various factors and to use those factors to plot graphs of
different algorithms.

The comparison Table 1 also represents the comparison
between the computational (CPU) time required for attain
the optimal solution of the two-dimensional Rosenbrock’s
function for various values of k using three different
MATLAB solvers (fminsearch, fminunc, and lsqnonlin) (15).

TABLE 2 | Numerical comparison of CPUTIME to find optimal
solution by MATLAB solver fmincon for different values of k.

fmincon without gradient fmincon with gradient

κ CPUTIME CPUTIME
05 1.0296065999 0.7644048999
10 1.0140065000 0.7488048000
20 0.9828062999 0.7176046000
30 0.9672061999 0.7800050000
40 0.9984064000 0.7644049000
50 1.0140065000 0.7332046999
100 0.9828062999 0.7644049000
200 0.9516060999 0.7332046999

Based on the findings presented in Table 1, it can be
observed that the MATLAB solver “lsqnonlin” exhibits
the shortest computational time compared to the other
two solvers because it is used for nonlinear least-squares
problems where it uses trust-region reflective or Levenberg-
Marquardt methods (18, 19). Moreover, this solver
demonstrates consistent convergence, which aligns with
the earlier discussions.

We employed the MATLAB solver “fmincon” to
solve a nonlinear programming problem involving the
minimization of a two-dimensional Rosenbrock’s function
within a specified disk. The problem was approached in two
distinct cases:

In Case 1, we provided the gradient information to the
solver. In Case 2, we did not provide the gradient information
to the solver.

min f (x, y) = k(y− x2)2
+ (1− x)2

subject to 4x2
+ 9y2

≤ 2.4
9x2
+ 4y2

≤ 2.4
x0 = 0, y0 = 0 (6)

Here, Table 2 clearly indicates that the computational
time taken by the fmincon solver is reduced when the
gradient information is provided for all cases. Table 3
presents the results obtained from using the MATLAB solver
“fminsearch” to calculate the computational (CPU) time,
number of iterations, and optimal solution for Rosenbrock’s
function across various dimensions (N).

Table 3 clearly demonstrates that as the dimension N
increases, both the CPUTIME and the number of iterative
steps required to obtain the best solution of Rosenbrock’s
function also increase. Here it must be mentioned that for
N ≤ 5, the solvers converge efficiently with a good initial
guess. For 6 ≤ N ≤ 7, the problem becomes more ill-
conditioned, and it requires a better initialization and suitable
step sizes. Beyond N > 7 (not considered here), the problem
grows excessively harder due to increased relevancies. As
N increases, ill-conditioning magnifies, requiring more
adjustable algorithms.

https://doi.org/10.54646/bijscit.2025.47

16 Thander and Bhowmik

TABLE 3 | Numerical comparison of CPUTIME and number of
iterations to find optimal solution by MATLAB solver fminsearch for
different dimensions.

N Initial point CPUTIME Number of
iterations

Optimal
solution

2 [0,0] 1.1856076000 79 [1.0000043859,
1.0000106409]

3 [0,0,0] 2.1528137999 165 [0.9999888606,
0.9999784466,
0.9999546148]

4 [0,0,0,0] 3.0108192999 246 [0.9999965740,
0.9999943462,
0.9999873156,
0.9999752880]

5 [0,0,0,0,0] 6.8016435999 550 [0.9999973986,
0.9999915771,
0.9999804183,
0.9999657956,
0.9999319576]

6 [0,0,0,0,0,0] 10.0776645999 795 [0.9954313379,
0.9865170744,
0.9765920213,
0.9572017636,
0.9165731911]

7 [0,0,0,0,0,0,0] 12.3240789999 949 [0.9995159466,
0.9994988146,
0.9993671115,
0.9992656319,
0.9984202982,
0.9968683034,
0.9937796303]

Conclusion

This paper presents a review and comparison of four
different optimization toolbox solvers implemented in
MATLAB for finding the optimal solution to the nonlinear
Rosenbrock’s banana function. The solvers evaluated in
this study are lsqnonlin, fminsearch, and fminunc. The
main criteria used for the comparison is the CPUTIME
of each solver. Numerical comparisons show that lsqnonlin
is more efficient than both fminsearch and fminunc. It
shows faster convergence and less calculation time while
reaching the optimal solution for the banana function of
Rosenbrock’s. Additionally, the paper analyzes the premise
of using the MATLAB solver fminsearch to identify optimal
solutions for approaching multidimensional Rosenbrock’s
banana functions dimensions (n = 2 up to n = 7). The
solver is demonstrated to be effective in finding the optimal
solutions of such higher-dimensional problems. The paper
also has a graph with the visualization of the convergence of
the optimal solutions for the Rosenbrock’s banana functions.
The overall effectiveness of lsqnonlin and other MATLAB
solvers depends upon various factors such as the class
of the optimization problem, smoothness of the function,
dimension, and constraints of the function. Its performance
may have been good for the Rosenbrock’s function, but it may

conduct poorly for other problems like highly discontinuous
and constrained optimization problems. We recommend
that for this reason, the research be extended to include other
well-known benchmark functions, such as Ackley, Rastrigin,
Griewank (14), and other real-world nonlinear optimization
problems. This would serve for further evaluation of the
performance of the solver with respect to other MATLAB
tools in various situations.

Author contributions

The manuscript’s conception, methodology, analysis, writing,
and revision were all performed by both authors.

Acknowledgment

Authors acknowledge the institute’s authority for
encouraging to carry out this research work.

Funding

This research received no specific grant from
any funding agency.

References

1. Broyden CG. The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA J App Math. (1970) 6:76–90.

2. Drobot S, Tacchi M, Cardozo C, Jones C. SOStab: a Matlab toolbox
for transient stability analysis. Electric Power Syst Res. (2024) 235:
110812.

3. Kelley CT. Iterative Methods for Optimization. Philadelphia: Society for
Industrial and Applied Mathematics (1999).

4. Akhtar Z, Rajawat K. Zeroth and first order stochastic Frank-Wolfe
algorithms for constrained optimization. IEEE Trans Signal Process.
(2022) 70:2119–35.

5. Smith H, Norato JA. A MATLAB code for topology optimization using
the geometry projection method. Struct Multidisciplinary Opt. (2020)
62:1579–94.

6. Coleman TF, Li Y. An interior trust region approach for nonlinear
minimization subject to bounds. SIAM J Opt. (1996) 6:418–45.

7. Coleman TF, Li Y. On the convergence of interior-reflective Newton
methods for nonlinear minimization subject to bounds. Math
Programm. (1994) 67:189–224.

8. Fletcher R, Powell MJ. A rapidly convergent descent method for
minimization. Comput J. (1963) 6:163–8.

9. Messac A. Optimization in Practice with MATLABr: For Engineering
Students and Professionals. Cambridge: Cambridge University Press
(2015).

10. Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge
University Press (2004).

11. Thander AK, Paul S, Maitra P. An improved Shamanskii method for
finding zeros of linear and nonlinear equations. Appl Math Sci. (2012)
6:4277–81.

10.54646/bijscit.2025.47 17

12. Mandal G, Thander AK, Dey S. Numerical comparison of two different
single step iterative methods in complex plane for finding basins of
attraction. Am Institute Phys Conf Ser. (2023) 2876:040005.

13. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound
constrained optimization. SIAM J Sci Comput. (1995) 16:1190–208.

14. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, et al.
Problem definitions and evaluation criteria for the CEC 2005 special
session on real-parameter optimization. Nat Comput. (2005) 2005:341–
57.

15. MathWorks. “Find Minimum of Unconstrained Multivariable
Function – fminunc”, MATLAB Documentation. Available online
at: https://www.mathworks.com/help/optim/ug/fminunc.html

16. Thander AK, Dasgupta S, Dawn U. A new fourth order newton like ite-
rative method for nonlinear equations. Appl Math Sci. (2014) 8:4079–85.

17. Bhattacharyya S, Thander AK. Newton–Krylov subspace method
to study structure parameter optimization in rib waveguide
communication. Industry Interactive Innovations in Science, Engineering
and Technology: Proceedings of the International Conference, I3SET
2016. Singapore: Springer (2018). p. 229–38.

18. Thander AK, Bhowmik D. Artificial neural network with the Levenberg-
Marquardt algorithm for numerical solution of two-dimension Poisson’s
equation. BOHR Int J Smart Comput Inf Technol. (2023) 4:
55–61.

19. Thander AK, Mandal G. Optical waveguide analysis using alternative
direction implicit (ADI) method in combination with successive over-
relaxation (SOR) algorithm. J Opt. (2024) 53:475–81.

20. Nocedal J, Wright SJ. Numerical Optimization. New York, NY: Springer
(1999).

https://doi.org/10.54646/bijscit.2025.47
https://www.mathworks.com/help/optim/ug/fminunc.html

	A Comprehensive Study of MATLAB Optimization Toolbox Solvers for Nonlinear Constraints and Objective Functions
	Introduction
	Different types of optimization solvers
	Rosenbrock's banana functions
	Conclusion
	Author contributions
	Acknowledgment
	Funding
	References

