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A number of artificial neural models have been presented in the literature in an effort to suggest a more accurate
representation of a single biological neuron. There are numerous publications on synthetic neurons that attempted
to replicate a single biological neuron, however, such models were unable to generate the spiking patterns of
a real biological neuron. Therefore, there is still scope to design and research improved spiking neural models
that more accurately reflect the functions of a biological neuron. This motivation drives extensive modification of
an artificial neuron model to produce the spike patterns of a real biological neuron. The modified single artificial
neuron model that has been proposed exhibits the functions of a biological neuron. It’s still crucial to model spiking
bio-neuron behavior. Modeling a spiking bio-neuron is still an important exercise in view of possible applications
of the underlying features in the areas of neuromorphic engineering, cognitive radio, and spiking neural networks.

Keywords: artificial neuron, biological neuron, artificial neural network (ANN), back-propagation (BP) algorithm,
spike response model

Introduction

A biological neuron is the basic dynamic element of
the human central nervous system. When a neuron is
triggered above a certain threshold value, it produces a
brief electrical pulse known as a “spike” (1). The synapse,
a fluidic area, is where a spike is transferred from one
neuron to another (2). In response to chemical and
other inputs, neurons are highly specialized for producing
and sending electrical signals (3). A neuron model that
accurately reflects the biological characteristics of the
Hodgkin-Huxley model and the computational effectiveness
of the integrate and fire model is provided in (4). This
model reproduces the spiking and bursting behavior of
recognized types of cortical neurons. Neurotransmitters and
electrochemical impulses help neuro-spike communication.
At an axonal terminal of a neuron, synaptic vesicles with
neurotransmitters are found. The synaptic cleft is a tiny
fluid-filled space between an axon terminal of a pre-synaptic
neuron and a spine of a different post-synaptic neuron.
Voltagegated Ca2+ channels become active in response to

action potential or spike reaching a presynaptic neuron’s
axon terminal, allowing Ca2+ ions to enter. With the
aid of Ca2+ ions, the vesicles are fused to the neuronal
membrane, and finally, neurotransmitters are released into
the synaptic cleft.

Numerous studies are currently being conducted on
how our brain’s neurons represent stimuli, and it has
been suggested that the timing of the action potentials or
spikes that these neurons release contains information (5).
Reaching bio-inspired nanoscale paradigms requires a basic
understanding of neuro-spike transmission, which is the
basic mode of communication between neurons. In the paper
(6), the author developed a plausible model to explain neuro-
spike communication. Hodgkin and Huxley explained how
variations in the conductance of Na+ and K+ in the axon
membrane can be used to create ionic currents in the giant
squid axon (7). They built a mathematical model based
on the voltage and time-dependent characteristics of the
Na+ and K+ conductance by carrying out several voltage
clamp tests (8). Through this study, a system of differential
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aligns was developed, eventually referred to as the Hodgkin-
Huxley model (9), which defined the ionic foundation of the
action potential.

Some cortical neurons spiking and bursting behavior is
described by the model (4). It combines the computational
efficiency of the integrate-and-fire neuron with the dynamics
of the Hodgkin-Huxley model. This model allows for the
real-time simulation of tens of thousands of spiking cortical
neurons. This model is developed in paper (10) using
first-order log domain low pass filters and two translinear
multipliers. The spiking patterns of this chip created neuron
model could be observed by altering the input current as
well as the biased voltages and currents. The Mihalas-Niebur
neuron model is also known as the generalized integrate-and-
fire neuron model (11). Many of the spiking and bursting
characteristics displayed by this model are observed in actual
biological neurons (10, 12). It uses straightforward first-order
differential aligns to explain each of the state variables, in
contrast to other simplified Hodgkin-Huxley neuron models
(13). This neuron model has a number of benefits, including
the ability to be bio-physically interpreted, which enables one
to understand what might occur in biological neurons.

Additionally, it offers a methodical technique to
incorporate numerous additional mechanisms and state
variables. The leaky-integrate and fire (LIF) model’s
counterpart, the spike response model (14), likewise
explains how neurons produce action potentials. While
integrate-and-fire versions are based on differential aligns
for the membrane potential, the spike response model relies
primarily on filters. This paper discussed a neuron model
that accurately simulated the membrane voltage dynamics
of a biological neuron cell by including a changeable leaky
resistor and bias current (15). The author in (16) examines a
straightforward model that can faithfully depict the spiking
behavior of a neuron. While capturing a sizable percentage
of the complexity of biophysical models, the spike train
permits the development of models that are significantly less
complex than those models. A mathematical description of
the evolution of membrane potentials and an adaptation
current is provided by a two-dimensional neuron model (14,
17). It is an evolution of the exponential LIF neuron that
imitates the upswing with an exponential function and the
downswing with a reset condition in an action potential.
The exponential term causes the voltage to increase quickly
when the membrane potential approaches the threshold
voltage (18).

Some of the parameters used in this model also affect
subthreshold adaptation and spike-triggered adaptation. As
a result of biological models, numerous artificial models have
been created. The first neural network model (19), which
uses directed weighted routes to connect the neurons, was
described by the author in the study (20). A generalized
model for giving the threshold in the axon with nonlinear
dynamics that depend on time is the McCullouch-Pitts
neuron (21). The linear sum of the weighted inputs from

FIGURE 1 | Block diagram of a single biological neuron model.

FIGURE 2 | Block diagram of a single artificial neuron model.

the other neurons in the network determines the binary
unit’s value in this model (22). To represent the network of
artificial neurons, researchers have built numerous network
models. Current applications of artificial neural networks
(ANN) span a range of social, industrial, financial, and
scientific contexts. Among the frequently used techniques
in these fields are a functional approximation, filtering,
direct modeling or system identification, inverse modeling
or channel equalization, control, classification, forecasting,
pattern recognition, and optimization. Rumelhart invented
the conventional back- propagation (BP) technique of
multilayer artificial neural network (MANN) as a supervised
learning strategy (23, 24) which is a gradient descent local
optimization technique.

Description of single biological
neuron model

The block diagram of a single biological neuron model
presented in Figure 1 comprises some inputs at the dendritic
end. Each of jth (1 ≤ j ≤ J) input of ith sequence, xij
is multiplied with its associated gamma-distributed time-
varying synaptic weights, wij (t) to produce the required
output ui (t). In this case, each xij represents either a “0”



10.54646/bjbnt.2023.02 11

TABLE 1 | Numerical values for important parameters used in
simulation study.

Symbols
Symbols

Description Description Typical Value Values

tp The time instant when. wij (t) has
maximum amplitude.

1msec

hp The maximum amplitude of wij (t).
which occurs at t = tp

1mv

µ Mean of Gamma distributed
random. variable

0.5

σ Variance of Gamma distributed.
random variable

0.3

Ts Sampling Time. 0.5msec

or “1,” and each input sequence consists of a J number of
bits. The strength of the connection between two neurons
varies in practice and is represented as synaptic weight. Either
the height of the postsynaptic potential or the slope of the
postsynaptic current denotes the amplitude response and is
determined by weights. In most of the single neuron models,
long-term synaptic plasticity is employed, which assumes
constant synaptic weights (25).

In Figure 1, ui (t), which denotes the membrane potential.
If it crosses some threshold value, then action potentials
in terms of spikes are generated. Here ui (t = 0) is the
initial membrane potential at the beginning of the ith
observation interval.

The membrane potential, ui (t) for ith input sequence of
biological neuron model is computed as

ui(t) =
J∑

j=1

xijwij(t)+ ui(t = 0) (1)

where 1 ≤ i ≤ I, I is total number of observation intervals,
1 ≤ J ≤ J, J is total number of bits in a sequence,

xij∈ x1, xj,... xJ, The time-varying weight function can be
mathematically expressed as,

wij(t) =
t
tp

hpfje
(

1− t
tp

)
(2)

fj is the gamma distributed random variable with mean
and variance chosen as 0.5 and 0.3 respectively. The symbol
“tp” represents the time when wij (t) has attained maximum
amplitude hp. In the proposed model, the AMPA receptor
is considered which has a typical value of tp = 1 ms and
hp = 1mV respectively. The output “y” of the model can be
expressed as;

y = φ(ui(t)) (3)

ϕ(ui (t)) = 1, when ui (t) > = TH otherwise ϕ (ui (t)) = 0,
when ui (t) < TH, where “TH” represents a certain output
threshold voltage.

Development of a single artificial
neuron model equivalent to
biological neuron

A mathematical model of a single artificial neuron which is
equivalent to a single biological neuron or a spiking neuron
is shown in Figure 2. The model consists of the inputs
X1...XJ...XNB. The input sequence is taken in terms of “0”s
and “1”s. Each input is connected with their synaptic weights
W1...WJ...WNB. Now, the inputs multiplied with synaptic
weights are given to summer or an adder which sums all
the inputs as a linear combiner. Then, the output of an
adder is applied to an activation function or a squashing
function which limits the permission of the amplitude range
of the output signal to some finite value. The output of the
activation function is represented as ϕ (u).

Steps followed by the single artificial
neuron model

In this subsection, a sequence of steps is followed to explain
the working principle of a single artificial neuron model
which is equivalent to a biological neuron.

Step 1: Take the input sequence in terms of “0”s
and “1”s. Here we provide the input sequence as
X1...XJ...XNB where NB = 20.

Step 2: Load the outputs obtained from the biological
neuron model of vector size (1000 × 1) and stored them
in an excel sheet.

Step 3: Assign the random value of weights in the artificial
neuron model, then the input sequence will be multiplied
with the random weights, and then it will get summed by a
summer using the following alignment.

u =
NB∑
j=1

xjwj (4)

Where “u” is the output of the summing junction and
1 ≤ u ≤ NB.

Step 4: The summing junction output is applied to a
suitable threshold function where a sigmoid function is used
as a threshold.

y1 = φ(u) =
AH

1+ e−B(u−TH)
(5)

Where y1 is the output of the single artificial neuron model.
“AH” is the maximum amplitude of y1, B is a scalar quantity
and TH is the threshold value after which the output
y1 decreases.
Step 5: Now we can give an input of vector size 1000× 20

to the artificial neural model, then in the similar ways
explained in step 4 using Eq. (5) we will find the output of
the artificial neural model.

https://doi.org/10.54646/bjbnt.2023.02
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FIGURE 3 | Plot of output for a single biological neuron model for
100 input patterns.

FIGURE 4 | Plot of output for a single artificial neuron model for 100
input patterns.

Step 6: To train the artificial neuron model, we will give
the output of the single spiking neuron having vector size
1000× 1 which is explained in step 2.

Training of artificial neuron model

An artificial neuron model can be trained by the following
steps;

Step 1: After providing the output of a biological neuron,
the model will compute the error function as;

e = f (y2, y1) =
1
2
(y2 − y1)

2 (6)

Where y2 represents the output of the target or desired
output, here y denotes the output of the single biological
neuron, and y1 is the actual output of the single
artificial neuron model.

FIGURE 5 | Plot of error for artificial neuron model for 100 input
patterns.

FIGURE 6 | Plot of output for a single biological neuron model for
200 input patterns.

Step 2: Find the error between the output of a biological
and artificial neuron model. Now by using a learning rule,
this error will be feedback to the artificial neuron model in
order to update the weights in accordance to get the actual
output which will be nearly equal to the desired biological
neural model output.

Step 3: The weights can be updated by using the following
learning rule;

1W = −η
δe

δw
(7)

Where η is the learning rate parameter and e is the error
function of the model and its value lies between 0 to 1.
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FIGURE 7 | Plot of output for a single artificial neuron model for 200
input patterns.

FIGURE 8 | Plot of output for a single artificial neuron model for 200
input patterns.

Development of updated weights for the
single artificial neuron model

In this subsection, the learning rule of updated weights of the
proposed AN model is derived. The output of the summing
junction is expressed in Eq. (4);

u =
NB∑
j=1

xJwj

Now, the output of the single artificial neuron model is
represented in Eq. (5);

y1 = φ(u) =
AH

1+ e−B(u−TH)

Error function of the model is given in Eq. (6);

e = f (y2, y1) =
1
2
(y2 − y1)

2

FIGURE 9 | Plot of error for an artificial neuron model for 500 input
patterns.

FIGURE 10 | Plot of output for a single biological neuron model for
500 input patterns.

Now updating the weights using the learning rule defined in
Eq. (7)

1W = −η
δe

δw

By using the chain rule Eq. (7) can be written as follows;

1W = −η
δe

δw

= η

(
δe
δy1

)(
δy1

δu

)(
δu
δwj

)
We know;

δe
δy1
=

1
2
(
y2 − y1

)2 (8)
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FIGURE 11 | Plot of error for an artificial neuron model for 500 input
patterns.

= (y2 − y1) (9)

δy1

δu
=

δ

δu

(
AH

1+ e−B(u−TH)

)

=
AHB(u− TH)e−B(u−TH)

(1+ e−B(u−TH))2

= AHB(u− TH)
1+ eB(u−TH)

− 1
(1+ e−B(u−TH))2

= AHB(u− TH)

(
1+ eB(u−TH)

− 1
(1+ e−B(u−TH))2 −

1
(1+ e−B(u−TH))2

)

= AHB(u− TH)

(
1

(1+ e−B(u−TH))
−

1
(1+ e−B(u−TH))2

)

= AHB(u− TH)(y1 − y2
2)

= AHB(u− TH)y1(1− y1) (10)

Where y = φ(u) = AH
1+e−B(u−TH)

TABLE 2 | Comparison of the number of spikes generated in BN and
AN Model with different input patterns.

Number of Input
Patterns

Number of Spikes
in BNModel

Number of Spikes
in ANModel

MSE

100 95 92 0.063
200 38 40 0.066
500 18 18 0.0047

From the model,

δu
δwj
= xj (11)

Hence,

1wj = −η
δe
δwj

= η
(

δe
δy1

) (
δy1
δu

) (
δu
δwj

)

= η(y1 − y2)AHB(u− TH)y1(1− y1)xj (12)

ife = y1 − y2
andδ = ey1(1− y1)

Finally, the change of weights in the jth branch is derived
as;

1wj = ηδAHB(u− TH)xj (13)

Now, using the learning rule,

WNew =Wold +1W (14)

Where WNew is a new weight, Wold is the older weight, and
1W is the updated weight for the model. Substituting the
value of 1wj in the jth branch the updated weight can be
given as;

Wj = wj +1wj
Wj = wj + δAHB(u− TH)xj

(15)

Where Wj is a new weight and Wj is the old weight for the
artificial neuron model.

Step 4: Now weight of the model which is determined in
step 3 is applied for finding new weights.

Step 5: The training procedure will continue through
updating the weights till the error function e will be
minimum i.e. the output of both single artificial neuron and
biological neuron model will be approximately equal to ∈
(e ≤ ∈ assume ∈ = 0.0001).

Results and discussions

In this section, the results of output between a single
biological neuron (BN) and an artificial neuron (AN) model
are analyzed and contributions of the study have been
highlighted. For simulating the proposed models a total of
50 input sequences or patterns have been applied to both
BN and AN models. By applying a threshold voltage of
15 mV to the BN model, specific spike patterns at the output
have been observed. The typical numerical values used for
the simulation study of the proposed model are listed in
Table 1.
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For experimental-based simulation study, input random
binary sequence each of length J (J = 20) is considered for
a time interval of 5 ms. Each input bit is then multiplied with
the time-varying synaptic weights obtained at an interval
of TS ms. After each successive TS ms time interval, all
the twenty partial products are added at the summer node
to produce an output. After a time interval of 5 ms, the
cumulative sum of outputs due to all ten weights are added
to produce a membrane potential. When the magnitude
of this potential crosses some predefined threshold value,
then the neuron gets fired, and a spike is produced in
the final output.

It is observed from Figure 3 that after applying 100 input
patterns to a BN, it generates 95 spikes whereas in the AN
model it gives 92 spikes shown in Figure 4. The mean
square error reduces to 0.063 for an artificial neuron model
presented in Figure 5 which represents an artificial neuron
that can mimic a biological neuron.

Similarly when the number of input patterns increases
to 200, then the spikes generated by the BN model
is 38 shown in Figure 6 whereas the AN model
produces 40 spikes represented in Figure 7. From
Figure 8, it is seen that the error in the AN model
reduces to 0.066.

Now after increasing the number of input patterns to 500,
both the BN model and AN model give 18 spikes which are
shown in Figures 9, 10 respectively.

It is observed that the mean square error decreases
to 0.0047 for the AN model shown in Figure 11 and
hence an artificial neuron functions the same as an
artificial neuron. It can be illustrated that with an increase
in the number of input patterns to both the BN and
AN model the error decreases and the proposed AN
model shows the realistic characteristics of a biological
neuron. Table 2 illustrates that when the number of
input patterns increases, the artificial neuron exhibits a
spiking behavior that is quite comparable to that of a true
biological neuron.

Conclusion

An improved biological neuron model is proposed and
its output spike patterns are presented in this paper.
By applying the same input patterns the response of
the biological neuron model is compared with the
proposed AN model. The comparison reveals that the
mean square error during the training phase of an
artificial neural model decreases as the number of input
patterns or sequences increases, implying that an artificial
neuron model acts more like a biological neuron. The
simulation findings also show that the output of the
artificial neuron model is almost similar to that of a
biological neuron.
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