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A method of anisotropic deformation of elastic materials based on free-form patches for biomechanics problems
is presented. The method provides an analysis of the anisotropic hyperelasticity of transverse isotropy. For this
purpose, fast and efficient Newton solutions are used. An invariant of anisotropic deformation is proposed,
with the help of which side states of energy are eliminated at large deformation. The method is also used to
restore finite elements. Because of this, it is possible to model large deformations, including for grids containing
degenerate elements.
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Introduction

In problems of trajectory optimization for articulated bodies
are solved (1, 2). Differentiable dynamic models of an
articulated body are used (3, 4). Anisotropic materials are
used in biomechanics, which include biological tissues, such
as skin and muscles (5). When modeling muscles, tissues,
and so on, anisotropic energies are used, as it is impossible
to solve this with the help of isotropic energies based on
Newton’s methods and gradients (6, 7). In Hahn et al.
(8), materials with symmetry properties relative to three
mutually perpendicular planes are considered, but the use
of anisotropic energies in Newton’s solutions is a problem,
as there are only approximate methods and brute-force
methods for returning the Hessian to semi-positive certainty.
Modeling of elastic dynamic objects is used in interactive
surgical simulators. A spectral decomposition method is
proposed in Chen et al. (9). This method is used to simulate
virtual surgery (10). Algorithms for modeling soft tissue
deformation in virtual surgery are presented. With the help
of these algorithms, the properties of the tissue material,
the visco-elasticity of tissues, and the anatomy of tissues
are simplified. The principles and components of a surgical
simulator are also described. The process of creating a

surgery simulator for a specific patient from a set of medical
images is shown. Based on the perturbation functions (11,
12), an approach was proposed (13), which includes the use of
control of the musculoskeletal system. Dynamic destruction
surrounds us in our daily life, but it is known that it is
extremely difficult to revive this phenomenon and is even
more complicated by anisotropic materials-materials with
underlying structures that dictate the preferred directions
of destruction. The paper (14) presents a method for
the evolution of anisotropic damages, an algorithm for
anisotropic elastic response, and an approach to conjugation.
The geometric approach of mechanics is used for anisotropic
damage. It is supplemented with structural tensors to encode
the anisotropy of the material. In Mu et al. (15), a method
of robotic cutting of soft materials is described, which can
be used for surgical manipulations. Simulators make it easier
to check controllers and generate data sets. Differentiable
simulators provide radiation-based optimization. This is
important for the calibration of simulation parameters and
optimization of controllers. Smooth movements of the knife
carry out the cutting of the material. The knife overcomes the
impact strength of the material, counteracts the friction of the
blade material, and creates a deformation of the shape. The
paper describes the control of a robotic arm. As mentioned
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FIGURE 1 | Base triangle.

above, the application of anisotropic energies to Newton’s
solutions is a problem, as there are only approximate
methods and brute-force methods.

In the proposed study, this problem is solved using
anisotropic energy, which is used in biomechanics, and
has its own closed-form compositions. Anisotropic energies
having the same eigenvectors are used. The only change
is manifested in the eigenvalues. The results are used in
the implementation of fast and efficient Newton solutions.
Existing transversely isotropic energies contain false stable
states. This leads to non-physical states during modeling.
To exclude this, an invariant of anisotropic deformation is
proposed. A simple and reliable anisotropic energy is used.
As the energy is quadratic, it is used for both the introduction
of anisotropic hardening and softening to isotropic models.
For its own system, expressions are presented in closed
form. Anisotropic energies are also used to restore poorly
conditioned elements. As a result, large deformations are
reliably modeled and the number of conditions of the finite
Hessian is reduced. In the proposed method, the proper
systems of anisotropic energies are expressed in a closed
form. The invariant of anisotropic deformation takes into
account the inversion. An anisotropic model adapted for
inversion is used. These solutions allow us to reliably and
efficiently model poorly conditioned elements. In this paper,

we study the transverse isotropy. This transverse case allows
us to make a factorization of an isotropic material. It also
does not depend on the choice of basic functions. The paper
also considers the problem of retargeting at rest. When
animating, the high-quality grid is distorted to match the
input animation. During deformation, the quality of the grid
decreases, but full correction (relaxation) in each frame is
an expensive operation. The relaxation method is used to
improve the quality of a curved mesh without changing its
topology. To do this, as much of the model of the isotropic
material as possible is preserved. This also eliminates a sharp
increase in the number of conditions.

Method description

Free-form patch

A description of complex geometric models using free-form
patches is proposed. Free-form patches are constructed by
setting the perturbation functions from the base triangles (11;
Figures 1–3).

Here, v1, v2, and v3 represent the base triangle; p1, p2,
and p3 are the clipping planes; and p4 and p5 are the base
planes (Figure 1).
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FIGURE 2 | Free-form patch.

A free-form patch is formed using perturbation functions
relative to the base triangle: F′(Ep) = F(Ep)+

∑N
i=1 Ri(Ep)

Ri(Ep) =

{
Q3

i (Ep), if Qi(Ep) ≥ 0
0, if Qi(Ep) < 0 , (1)

where (Ep) is the 3D point, R(Ep) is the perturbation function,
and Q(Ep) is the perturbing quadric.

Anisotropic deformation

The deformation map map(x̄) = x is applied, and the vertex
is deformed from the initial positionx̄ to the new position x.
The following affine map is applied map(x̄) = S(x̄)+ t. Here,
t ∈ <3 determines the translation, and S ∈ <3x3 determines
the scaling and rotation of the map, which is called the
deformation gradient. Their union determines the shift,
while ∂map(x̄)

/
∂ x̄ = S. The vertex offset is denoted as s; x = x̄

+ s is the new coordinate.
The forces are calculated using the basis change tensor and

double compression (16):

c = ∂ST/
∂s :

∂4(S)
∂S

, (2)

where 4(S) is the deformation energy.
For patches of free forms, c ∈ <12, ∂4(S)

∂S ∈ <
3x3, and

∂ST/
∂s ∈ <

3x3x12 .
We write down the isotropic deformation energy (17)

IST S = tr(STS), IIST S = tr((STS)T, STS), IIIST S

= det(STS), (3)

In addition, we define the anisotropic invariants (18)

IVST S = aT(STS)a, VST S = aT(STS)T(STS)a, (4)

FIGURE 3 | Three free-form patches.

where a is the direction of anisotropy.
Let the Hessian in three-dimensional space be expressed in

the form (19)

∂tr((STS)(aaT))

∂S
= 2S(aaT), (5)

∂2tr((STS)(aaT))

∂s

= 2

(aaT)00I3x3 (aaT)01I3x3 (aaT)02I3x3
(aaT)10I3x3 (aaT)11I3x3 (aaT)11I3x3
(aaT)20I3x3 (aaT)21I3x3 (aaT)22I3x3

 , (6)

where I3x3 is a 3 × 3 identification matrix and (aaT)ij is a
scalar entry (i, j) (aaT).

The Hessian of arbitrary energy 45 (19) is

∂245

∂s2 =
∂45

∂I5

∂2I5

∂s2 +
∂245

∂I2
5

(
∂I5

∂s
∂IT

5
∂s

)
, (7)

Substituting (4) and (5) into this expression gives

∂245

∂s2 = 2

∂45

∂I5

(aaT)00I3x3 (aaT)01I3x3 (aaT)02I3x3
(aaT)10I3x3 (aaT)11I3x3 (aaT)11I3x3
(aaT)20I3x3 (aaT)21I3x3 (aaT)22I3x3


+ 2

∂245

∂s2

(
vec(SaaT

)
(vec(S(aaT)T)

]
, (8)

The vector vec(SaaT) is defined in the interval of a subspace
of the third rank.

Let the twisting matrix be expressed in the form (20):

M1 = UTxAVTaaT, (9)

Let the twisting matrix with rotations be expressed in the
form (20):

M2 = (δy(VTa))UTzAVTaaT
− (δz(VTa))UTyAVTaaT,

(10)
where δy and δz are the diagonal elements of the matrix.
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FIGURE 4 | Graph of the dependence of the score on the mesh.

FIGURE 5 | The restored elements allow you to complete the sequence.

We use the substitution (STS)→(RTS):

Ia = tr((RTS)aaT), (11)

Using a rotation gradient in a closed form using its own
matrix:

Me =
1
√

2
U
[

0 − 1
1 0

]
VT, (12)

Applying double compression, we get

∂R
∂S
: SaaT

=
√

2(VTa)x(VTa)y

(
δx − δy

δx + δy

)
Me, (13)

Thus, an anisotropic invariant was used, and anisotropic
energy was applied on its basis. The positive property of
this invariant is that the stretching in the direction of the
fiber is controlled.

Results

New strain gradients are proposed; therefore, new basis
change tensors are applied. These tensors depend only on the
positions in the space of objects, so the anisotropic case is
simple. A simulation using these tensors is carried out, and
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FIGURE 6 | Stress-deformation graph.

it is shown that the differences are visually insignificant. All
components of element recovery are correct. 3D stretching
tests were carried out on a grid containing 1,00,000 free-
form patches with materials uniformly set for µ◦=◦1 and
λ◦=◦100 (Figure 4).

Based on these experiments, if it is assumed that
the global conditionality will collapse by more than two
orders of magnitude, rehabilitation is applied. In all the
three-dimensional isotropic energies considered by us,
this corresponds to k ≈ 10−5. The anisotropic model was
calculated in 1.2 s per frame at µ◦=◦10 when running on
Intel Core i5-760 (four cores and four threads). In the
case of softening, the mesh becomes very elastic; the model
allows you to reliably process the dynamics. The simulation
uses relaxation, but it diverges at the beginning of the
sequence (Figure 5). The proposed method of rehabilitation
allows you to complete the simulation. Figure 6 shows the
biomechanical behavior of the material (Figure 5) when it
is loaded along the longitudinal axis in the form of a stress-
deformation graph reflecting the dependence of deformation
and stress. Stress is displayed on the ordinate axis, and
deformation is displayed on the abscissa axis. When the
material is stretched on the stress-deformation graph, a
period of slight deformation (segment 0−2 on the abscissa
axis) is revealed, which primarily depends on a thin elastin
grid. The contribution of non-straightened collagen fibers
to this phase can be neglected. In this phase, small loads
cause strong stretching at low stress in the material. At the
interval 2−4 of this graph, randomly located collagen fibers
begin to arrange themselves in the direction of the force
and straighten out. Deformation becomes more difficult.
Later, on the segment 4−6, all collagen fibers are oriented
in accordance with the direction of the force, and only slight
deformation is possible.

Conclusion

The anisotropic energy optimal for inversion is presented.
This energy is plain and reliable, which is developed using
a proposed invariant. A method for restoring elements
for poorly conditioned grids is proposed. This method
is based on free-form patches. The method is capable
of processing quadrature degeneracy for any grid. From
the point of view of biomechanics, the basic physical
properties of an elastic material, such as stress, extensibility,
viscoelasticity, and anisotropy, are considered. A grid of
elastin fibers is responsible for the stress. Extensibility is
a response to mechanical action. It allows the material
to stretch. Viscoelasticity includes creeping and stress
relaxation. Creeping is observed when the force applied to
the long-term stretching of the material causes its gradual
elongation. The effects of viscosity are observed only when a
force greater than the material usually meets in vivo is applied
for a long period. With anisotropy, the grid of collagen fibers
determines the preferred extensibility in a certain direction.
Collagen and elastin fibers are more stretchable along this
direction. The mechanical properties of an elastic material
are determined not by fibers of a separate type, but by their
mutual arrangement and influence on each other, i.e., the
architectonics of connective tissue fibers. These properties
are dynamic and change as the connective tissue fibers
are rearranged under the influence of external and internal
forces. The properties of contractility and extensibility of the
material, although due to the same structures, depend on
different characteristics of connective tissue fibers and do
not have a direct relationship. There is some tendency to
the inverse dependence of these properties taken together.
However, in a single case, knowing one property, it is
impossible to predict the second.
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