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The density of vehicles on roads has increased manifold over the last few decades. A seamless system to detect
and track a particular vehicle can solve many problems, like traffic congestion, etc. This paper proposes the
use of real-time data taken from closed-circuit televisions to detect and track the movements of vehicles. The
feature extraction and classification are completely done by the process of faster RCNN (regional convolutional
neural networks). The core work is based on region proposal networks. CNN furthers the generation of features;
classification is done separately, but it is aided by RCNN, which includes deep learning as well as training the
neural network. This is used along with the Kanade Lukas Tomasi algorithm to tack the desired features extracted.
This method is simulated on MATLAB software.
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Introduction

With the seamless services provided by vehicles, especially
private modes of transportation, there has been a rise
in the number of people mobilizing themselves through
private transportation. This has led to an increase in traffic
congestion on Indian roads. Construction of new roads is
looked at as a solution, but it is an exhaustive approach.
People usually encroach on the area around roads; for
example, peddlers, beggars, shopkeepers, etc.

A road cannot be widened infinitely in a finite area. Even
in the slight area, folks like to park their automobiles further
restricting it. Demand and infrastructure structure seems to
mismatch. More edifices for ease of movement cannot be the
sole solution to myriad issues (1).

The people’s behavior becomes apathetic during the
parking of their vehicles. This phenomenon is seen a lot
in our daily lives. If a person gets just a little bit of space,
they will park their vehicle even if it leads to blocking the
traffic on the road.

This also implies people are forced to park their
conveyance in shady places too. Obviously, this will
encourage the theft of automobiles, especially cars. Reports
of missing vehicles have become a frequent phenomenon,
so much so that such happenings do not shock society
that much. But these things can be sorted by various
algorithms, like recurrent neural networks containing a
memory component that can be used to keep track of object
movement across multiple frames of video (2).

Another important factor to be considered here is the
crime that may be committed by using these stolen vehicles.
For instance, with increased radicalization, there have been
many cases of bomb blasts, and the improvised explosive
devices (IEDs) used in these events were usually installed
in stolen, abandoned vehicles. This entire situation can lead
to an innocent person charged guilty of arson. Also, by
the time a person finds their lost vehicle, it may already
have been damaged.

Fundamentally, object detection is aimed at finding the
objects of interest, which revolves around classification and
localizing the identified interested regions. Labels are put on
them with rectangular bounding boxes to show the scores of
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the objects present in the regions of interest (3). Detection of
vehicles has a really broad scope as they can be spotted on the
basis of various features that they attribute.

It can be based on texture, geometry, movement, speed,
and so on. Thus, the feature classification of these can vary
accordingly. With the advent of AlexNet and many other
deep learning approaches, a lot of algorithms can be used for
this purpose (4).

This paper is focused on solving the problems of similar
nature stated above by providing an approach to detect a
vehicle from live closed-circuit television (CCTV) footage or
video and track it down efficiently and as quickly as possible.
The video analytics are done using MATLAB software.

Literature review

Aerial approaches to vision are considered for detecting
modes of transportation of a particular type. A bird’s-eye
view is one of the ideas but it has not been specifically
broadened in that aspect (5). The basic idea revolves around
illumination in images.

Gathering features of interest by eliminating objects in
the background like trees, billboards, shops, and so on is
important. The core logic is based on whether the objects
are dark and the background is lighter or vice versa. Optical
vision and the Kanade Lukas Tomasi (KLT) tracker go hand
in hand for the fulfillment of the detection task.

A hardware-based approach using various types of
sensors can optimize the application (6). Various types of
technologies are used for detecting and tracking the vehicles
with devices like light detection and ranging (LiDAR), the
global system for mobile (GSM), the geographic information
system (GIS), etc. The sensor nodes used for these methods
are sometimes prone to damage, and there is a cost factor in
their installation. Each has its benefits and disadvantages.

Detection of traffic on the basis of nodes associated with
the edges aids in efficiently managing the traffic (7). It
has a YOLOv3 (You Only Look Once) model trained with
a great volume of traffic data. After that, the DeepSORT
(Deep Simple Online and Realtime Tracking) algorithm is
optimized by retraining the feature extractor for multi-object
vehicle tracking.

The Jetson TX2 platform is used for implementing the
results. It shows efficient detection of traffic flow with an
average processing speed of 37.9 FPS (frames per second).
The feature extractor used in the DeepSORT algorithm
utilizes a dataset related to pedestrians rather than vehicles.
Thus, the work by (7) uses the combination of the above
algorithms for traffic flow detection in the ITS (Intelligent
Transportation System).

Most of the vehicle detection systems do not exclusively
focus on night time detection of automobiles. This aspect
of detection has been focused on reduced visibility during
the night (8). Geometric aspect on the basis of lights of

automobiles of both front and back are considered with
multi-camera view.

However, the limitations are pretty obvious, as it is night-
time detection, so the contours of lights would not be very
accurate. Another aspect to be considered is that maybe a few
cars have damaged taillights or headlights.

A comprehensive study of anomaly detections in urban
areas, like traffic congestion, people’s gatherings, accidents,
etc., is mentioned by (9). Surveillance cameras, GPS systems,
urban computing, and spatiotemporal features, form the
basis for anomaly detection in this context. Deep learning
techniques such as convolutional neural networks (CNNs)
can be applied to process data related to city sides.

Vehicle theft detection using microcontrollers like
Arduino is considered by Mallikalava et al. (10). In such
detection methods, a lot of cooperation is required from
official authorities, which may not always be available due to
time and operational framework constraints.

A multi-vehicle scenario can be handled by fusing different
modalities of radars, sensors, and so on (11). Data is pre-
processed and fed to neural networks; image and non-image
modalities are fused together, along with line-of- sight (LOS)
detection by radars and sensors. This improves efficiency for
vehicles to be detected where one sensor may not detect but
other one might. However, installation and implementation
of this may be a costly affair.

The choice of features to be detected can sort out a
given problem if they are chosen wisely. A difference in the
colors is one of the key factors if a smoky vehicle has to be
detected (12). The difference in pixels is simultaneously used
with edge detection.

As, when there will be smoke around a particular part of
a vehicle, the edge information for that part would be less as
compared to the other part. Three orthogonal planes along
with a histogram are used for this. For the entire experiment,
focus is only on the back of the vehicle, from which smoke
may come, so it is called the “key region.”

Also, moving vehicles are differentiated from other areas
by using their area difference in pixels. All the samples
must meet this criterion, which limits the operation of
this algorithm. Moreover, sometimes smoke may look
grayish or white, might match with pixels of background
making the smoke go undetected. Also, the smoke outlets
of many vehicles may not have edges in the first place,
altering the assumption of edge difference between real and
false detection.

Vehicle detection using surveillance data based specifically
on pixels can be another approach to handling this problem
(13). Foreground detection by eliminating the background
to selectively spot the vehicles is done by the differentiation
of pixels. Frames are distinguished for this purpose by
choosing the moving pixels in a frame and discarding the
stationary ones.

Hence, moving pixels are assumed to be vehicles. The
optical flow vectors are used to generate a threshold to
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eliminate any other moving objects, but if a car stops moving
or maybe the speed is too slow, it may go undetected.

A basic method of using optical character recognition
(OCR) using an in-built MATLAB function can be used
to detect characters from license plates (14). It detects the
characters only from static frames that is once chosen, which
may not be able to read the number plate in live movement
of vehicles. This program cannot be scaled further, as OCR
may not work accurately if the vehicle is not even detected
correctly in the first place. This aspect is not addressed,
oversimplifying it by considering all other variables static.

Matching the features one wants to be identified with the
standard features stored in a particular database beforehand
can help in the recognition of desired attributes (15). Here,
features of a face are detected, particularly the lips of a person,
on the basis of already stored data for comparison. Thus,
for a threshold, this data is essential, and moreover, feature
recognition for twins and bearded men may be a problem.

Categorizing the vehicles based on the model of cars
in train datasets can lead to different annotations being
considered (16). These annotations effectively enhance the
performance of YOLO v5 (version 5). Simple CNN was
used for features, and anchor boxes were deduced with
the aid of YOLO v5.

The implementation of the algorithm is done on Pytorch.
For CNN, entire image completely is convolved without
first localizing separately. The operation is basically based
on similar datasets, considering different angles and the
changing weather of a particular location. To work with
so much specificity, the dataset for training requirements
need to be specific too, which may restrict the operation
of the algorithm.

Humans are considered objects to be detected (17) for
abnormal event detection in online surveillance video.
The model is based on an “intelligent video analytics
model” (IVAM), also known as “human object detection”
(HOD). IVAM is experimented with MATLAB software. The
abnormal event detected may be subjectively defined, as there
is no standard as to what is really abnormal behavior.

The comparison to the previous frames and actions that
are considered abnormal, can change according to these
referred frames. This can limit the detection of the event.

Enhanced bat optimization is used to select features for
vehicle detection (18). Just as bats focus on a target to
avoid in a particular region, vehicles are pointed out in a
region of interest, which is shown here taken in a rectangular
geometry. The interference areas between different vehicles
are removed by the enhanced convolutional neural network
(ECNN) classifier.

This method is based on a threshold generated by
examining pixels, which can limit the threshold. This
classification is computationally complex, though.

Proposed methodology

The method that is considered uses real-time data from
CCTVs on highways. From the chosen video, all the frames
are extracted first.

FRMSL_CN = InputVideo.NumberOfFrames;

Once the video data is extracted, segmentation is done in the
frames, as video is nothing but a large number of different
frames. This is where the faster RCNN approach is used.

Selective search

The first step of this technique uses the selective search
algorithm. It groups separate regions together based on
their pixels. Selective Search is a bottom-up segmentation
approach where sampling techniques are diversified
considering scores of average best overlap (ABO) and mean
average best overlap (MABO) Rulijlings and van de Sande
(9). Going by the hierarchical method, different scales of an
image are grouped naturally until the entire image is created.
The overlap scores are considered to segment the image
into parts of similar pixels. It takes into account texture,
pixel intensity, etc.

Region proposals using faster RCNN

Regional convolutional neural networks stands for Regional
Convolution Neural Networks. This method consists of two
steps. Firstly, the Region Proposal Network (RPN) generates
a set of potential bounding boxes for objects in an image.

Region Proposal Network is basically a CNN trained to
identify objects of interest. In this paper, a network is trained
to identify vehicles and their license plates. A bounding box
is generated around it, along with a score.

In the second stage, a different CNN was used to classify
the objects. This stage includes training on a large dataset of
properly annotated images with predefined labels of interest.

trainingData = vehicleLicense;

inputLayer = imageInputLayer ([32 32 3]) ;

filterSize = [3 3] ;

numFilters = 32;
(
number of filters

)
The network also refines the bounding box locations using
regression to more accurately enclose the objects in the
image. When the entire code is run, a choice can be given to
the user whether to load the pre-trained network or train the
network again (Figure 1). Thus, flexibility can be maintained
if the dataset is updated or even changed for the vehicles.

The Faster RCNN is an object detection algorithm which
gives feature vector points of a certain object, usually these
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FIGURE 1 | Options in training the network.

FIGURE 2 | Bounding boxes detecting and tracking in various videos
using faster RCNN and KLT.

denote indirectly to the bounding box coordinates of the
object. The prediction is done using a regression model,
and the measurement is relative to the anchor box. The
coordinates generally are of bottom right and top left corner
with width as well as height of the box.

So this helps in the identification of objects by the model.
Faster RCNN does not directly produce feature vectors;
however, they can be generated indirectly by producing a
set of bounding boxes and class probabilities for objects
detected. These can be further used by the KLT algorithm
to track the desired features for object localization in the
frames (Figure 2).

The features are extracted from the
training by faster RCNN.

Let {G} be the set of feature vectors generated from Faster
RCNN, {g_t} be the feature tracker, and {s_t} be the motion
model. The predicted location of each feature at time {t} is
given by:

{x_t} = {g_t(G_{t− 1})+ s_t(G_{t− 1}, G_t)}

where {g_t} is applied to the set of feature vectors from the
preceding frames {G_{t-1}}, for the prediction of location’s
each feature in the current frame.

Thus, KLT uses this motion model {s_t} to predict location
of each tracked feature in the succeeding frame. It is typically
a linear motion model.

Simplified illustration of proposed
algorithm

For detection using Faster RCNN, its CNN is run on the
input image for bounding box coordinates and class labels of
objects detected (19).

For bounding box regression, we adopt the
parameterizations of the four coordinates following:

tx = (x-xa)/wa,
ty = (y-ya)/ha,
tw = log(w/wa),
th = log(h/ha),
t∗x = (x∗-xa)/wa,
t∗y = (y∗-ya)/ha,
t∗w = log(w∗/wa),
t∗h = log(h∗/ha),

where x, y, w, and h denote the box’s center coordinates
and its width and height. Variables x, xa, and x∗ are for the
predicted box, anchor box, and groundtruth box, respectively
(likewise for y, w, h).

• The accuracy of predicted values of the bounding
boxes is depicted using mean squared error (MSE). Its
average is used for training the dataset.

• KLT algorithm is operated on objects within the
bounding boxes for set of feature vectors (FVs), which
are used for object recognition for tracking purposes.
For example, if we consider that we have used faster
RCNN and KLT to extract FVs for the car and apple in
the input image, the output values may look something
like this:

Car: (a1, b1, a2, b2)=(150, 70, 250, 90), FV=[0.1,. 2, .3. . . ..]
Apple: (a1,b1,a2,b2)=(100,50,200,150), FV=[0.4,. 5,. 6. . . .]

• Now, these extracted FVs are used for object
recognition, as the above FVs can be compared to a
set of known FVs of the same objects, and similarity
is predicted by a measure called Euclidean distance,
which may look like this:

D=sqrt((0.11–0.1)’2+(0.22–0.2)62+(0.33–0.3)’2+........)
This D can be measured with a threshold value for object

detection. The above instance simplifies the concept used,
which realistically involves complex equations as seen in Ren
and He (19).

Results and comparison

The analysis has been carried out in MATLAB software
experimentally. The dataset consisting of license plates
of various vehicles is taken from https://www.kaggle.com/
datasets/andrewmvd/car-plate-detection. The performance
parameters like precision, recall, accuracy, etc., have been

https://www.kaggle.com/datasets/andrewmvd/car-plate-detection
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FIGURE 3 | Comparison of precision.

FIGURE 4 | Comparison of accuracy.

FIGURE 5 | Comparison of accuracy.

compared between the proposed faster Regional Convolution
Neural Network with Kanade Lukas Tomasi (Faster RCNN
with KLT) and the existing enhanced CNN with support
vector machine (SVM with ECNN). The comparison is
depicted in Figures 3–6.

Precision

Precision basically refers to the ratio of true positive
predictions to the total positive predictions, including the

FIGURE 6 | Comparison of F-score.

false ones. Its formula can be generally stated as in “Towards
Data Science” (20):

True positives
True positives+ false positives

=
No. of correctly predicted positive instances

No. of total positive predictions made

Figure 3 shows the comparison between faster RCNN with
KLT and ECNN with SVM for the precision parameter.

As it is visible, the precision ratio in both methods is nearly
same, which is theoretically 100%. This value is reached by
using the same dataset in both works.

Accuracy

As the term indicates, accuracy defines how accurately
an algorithm performs. It is obtained by dividing correct
predictions by all the predictions in total. It can be written
as in “Towards Data Science” (20):

True positives+ True negatives
True positives+
True negatives+
False positives+
False negatives

=
No. of correct predictions

No. of all predictions
=

No. of correct predictions
Size of dataset

Figure 4 depicts the accuracy parameter.
The value of accuracy in proposed work is 99.267% and for

the existing work it is 74.572%. This clearly shows the edge
that proposed work has over existing work.

Recall parameter

This parameter is calculated by dividing the correctly
observed positive samples by the total of these samples.

https://doi.org/10.54646/bjcicn.2023.01


6 Kaur and Singh

This can be stated as in “Towards Data Science”
(20):

True positives
True positives+ False negatives

=
No. of correctly predicted positive instances
No. of total positive instances in the dataset

Figure 5 shows the comparison for respective considered
work for the above parameter.

The value of recall is 99.2% and 74.5% for proposed and
existing work, respectively.

F-score parameter

The F-score is calculated using recall and precision. It
includes the average means of these two aforementioned
parameters. It can also be written as in “Towards Data
Science” (20):

F− score = 2∗
Precision ∗ Recall
Precision+ Recall

The comparison of proposed and existing work for the
aforementioned parameter is illustrated in Figure 6.

The F-score for proposed work is 99.6% and for existing
work is 85.4%. It is clearly visible from the above results
that the proposed method shows better parameters. One
of the reasons of this is Faster RCNN used instead ECNN
of existing work. Existing work basically uses convolution
without considering proposals for regions for localization.

Additionally, it uses the list method for tracking. The old
and new lists need to be updated every time tracking is
done. This may end up making it computationally expensive.
The proposed work simultaneously uses region proposal for
implementation which is one of the reason for high recall and
a more efficient performance.

Conclusion and future optimization

There are myriad variables and circumstances that can play
a part in detecting and tracking a vehicle. Faster RCNN
with KLT does this job efficiently as far as license plates are
concerned. The biggest window for improvisation is opened
by this method, as learning and training of the network can
be done with multitudes of datasets.

This basically shows the network is ever ready to learn
whatever a user may want to teach it, specifically here,
for vehicles. With such high performance parameters, this
technique can aid smart automobile system efficiently.
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