
BOHR Journal of Computational Intelligence
and Communication Network
2023, Vol. 1, No. 1, pp. 7–15

DOI: 10.54646/bjcicn.2023.02
www.bohrpub.com

REVIEW

Recognizing traffic signs with synthetic data and deep
learning

Avaz Naghipour* and Rahim Pasbani

Department of Computer Engineering, University College of Nabi Akram, Tabriz, Iran

*Correspondence:
Avaz Naghipour,
naghipour@ucna.ac.ir

Received: 02 January 2023; Accepted: 10 January 2023; Published: 19 January 2023

Recently, in-depth learning about computer vision and object classification tasks has surpassed other machine
learning (ML) algorithms. This algorithm, alike similar ML algorithms, requires a dataset for training. In most real
cases, developing an appropriate dataset is expensive and time-consuming. Also, in some situations, providing
the dataset is unsafe or even impossible. In this paper, we proposed a novel framework for traffic sign recognition
using synthetic data and deep learning. The main feature of the proposed method is its independence from the
real-life dataset, which leads to high accuracy in the real test dataset. Creating one-by-one synthetic data is more
labor-intensive and costlier than providing real data. To tackle the issue, the proposed framework uses a procedural
method, which gives the possibility to develop countless high-quality data that are close enough to the real data.
Due to its procedural nature, this framework can be easily edited and tuned.

Keywords: deep learning, convolutional neural networks, computer graphics, synthetic data, traffic sign
recognition

Introduction

Nowadays, many kinds of research and innovations are
conducted to enhance autonomous vehicle technologies.
Giving a semantic perception to artificial intelligence (AI)-
based drivers to recognize environmental objects is one
of the main goals in research (1–3). Indisputably, traffic
sign recognition ability plays a significant role in AI-based
vehicles. These signs are guidance that makes drivers aware
of upcoming situations. Thus, traffic sign detection and
recognition that computer vision applications are trying to
address are considered a significant issue. While having a
good dataset for ML applications (especially in supervised
ML) is mandatory, there are a few premade datasets
available on demand (4). Accessible free datasets are usually
used to benchmark competition or evaluate state-of-the-
art applications. For preparing production-level applications,
first, it is crucial to provide a proper dataset with adequate
quantity and quality. In the case of an image classifier, the
datasets are normally images captured with cameras from

real-life instances. At the first glance, providing images seems
to be a handy and cost-efficient procedure; however, when the
required number of images for the train classifiers is taken
into consideration, the difficulty of preparing such datasets
becomes bold. ML algorithms in general and deep learning
in particular use thousands or even millions of images to
give a reliable and practical result. Obviously, providing this
amount of image in many cases is wearisome and costly,
if not impossible.

Other than the cost and expenses, a key issue with
providing a traffic sign dataset is time. For more clarity, let
us conjure up the traffic sign dataset obtaining procedure,
and how time-consuming it would be to capture, crop,
edit, and label singly and manually. A more significant
problem is the time needed to capture photos in different
seasons and conditions of a year. For instance, if images
are captured only during a hot summer, the dataset would
not include the images of signs covered with snow during
winter, and encountering such images causes trouble for
the classifier. Thus, generalizing the model comprehensively

7

www.bohrpub.com
https://doi.org/10.54646/bjcicn.2023.02
https://www.bohrpub.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

8 Naghipour and Pasbani

requires at least 1 year of waiting, to include all seasonal
visual appearances.

Another solution is using CAD datasets. Synthetic images
rendered from a 3D virtual scene have been used vastly
in computer vision tasks (5). Recently, they are used in
object detection and classifier applications. Flying Chairs (6),
FlyingThings3D (7), SYNTHIA (8), and Scene Net (9) are
examples of synthetic images based on datasets that are used
to train or evaluate relevant ML algorithms.

Fortunately, by progressing in the computer graphics (CG)
industry, a number of online CAD datasets and premade 3D
objects are growing. However, except for very few datasets,
there has been no access to CAD models yet. Considering
the issue of making CAD data, it is perceptible that capturing
real images may be cheaper than developing synthetic ones.
Modeling even a very simple 3D model is a time-consuming
process that requires experts to be accomplished.

Another problem with most synthetic images is their
dissimilarity to real objects. These images are far distinctive
from real-world references in terms of appearance. By
browsing some accessible CAD datasets, it can be explicitly
seen that the objects do not have the proper lighting as
we have in the real world. Another significant issue that
makes CAD models look rough is the texture and material of
models. Instead of resembling real materials such as wood,
fibers, and metals, those models seem to be made of solid
clay. If the ML application is trained by non-real-like images,
the result will not give adequate accuracy in ground-truth
cases. This is why sometimes researchers choose to mix them
with some real images to improve the functionality of the
models (10).

To overcome these challenges, an efficient approach is
proposed in the present work to develop synthetic traffic
signs. To this end, a procedural way is used to provide
the desired dataset without any quantity limitation. In the
proposed method, every small detail is taken into account to
make the images quite real-looking, so that they can hardly be
recognized from real images. To do so, various ML classifiers
were employed to be trained by the developed dataset. The
outline of the paper is as follows: Section 2 discusses related
works. Section 3 presents synthetic image generation. The
overview of image processing filters and image augmentation
are studied in Sections 4 and 5, respectively. Section 6
describes setting up deep convolutional neural network
(DCNN) architecture. In Section 7, experiments and results
are reported. Section 8 concludes this paper.

Related works

There are various algorithms for classifying traffic signs.
The most regarded algorithms in this field are based on
ML methods; however, there are some research projects that
employ the color and shape of the signs. These characteristics

cannot be directly used to classify the traffic signs, but they
can remarkably help the actual classifier.

The support vector machine (SVM) for classification has
always been a selection at hand. In ref. (11), Maldonado et al.
used SVM for automatic multiclass traffic sign detection and
classification using a one-vs-all approach with a Gaussian
kernel. In the other attempt (12), by considering the
limitation in the shape and color of signs, authors used a
color segmentation and shape matching approach, and then,
the dataset has classified using SVM. The obtained results
are promising. In the method suggested in ref. (13), after the
detection of a sign via the MSER procedure, the HSV-HOG-
LBP features are extracted, and then, a random forest is used
to finalize the recognition process. Ref. (14) has tried to prove
the effectiveness of the random forest recognition algorithm
in both accuracy and speed on traffic sign recognition.
Nowadays, modern computer vision classifiers mostly deploy
CNN for recognition tasks. In ref. (15), the densely connected
CNN is used for traffic sign detection. In ref. (16), the authors
have shown the results of different architectures of CNN to
solve the same recognition problem.

In the area of synthetic data deployment, some remarkable
works have been presented so far. The authors in ref. (17)
have suggested a 2D synthetic text generator engine, which
places texts onto random backgrounds and employs the
obtained data to train a CNN-based classifier to recognize
texts in graphics. Furthermore, a 3D synthetic dataset was
used in ref. (10) to predict hand gestures in an image. The
accuracy has risen after adding some real images to the
training dataset. The CAD data have been used in some
research for classifying and object detection tasks (18, 19).
Another important challenge in computer vision is viewport
prediction. In ref. (20), rendered images trained a CNN,
and the result was excellent. Most of the relevant methods
have used premade online CAD libraries, such as Trimble
3D warehouse, TurboSquid, Yobi3D, and ShapeNet. Using
premade datasets is handy to test new models or benchmark
competitions. But, in real applications, any problem needs its
own exclusively developed dataset to be prepared.

Synthetic image generation

The proposed method in this research contains two main
steps. In the first step, a procedural virtual 3D scene is
created, and in the second step, a specific DCNN architecture
is designed to be trained by the generated dataset obtained in
the previous step.

First of all, a virtual 3D scene needs a setup. Then,
procedurally, in 3D world space, feasible variations,
and randomizations are made, so that every state forms
a believable arrangement of the scene’s objects and
components. By every run, a specific arrangement is
made and rendered. In the next step, to make extra
purposeful variations, some image processing-based filters

10.54646/bjcicn.2023.02 9

FIGURE 1 | 3D scene contains 3D objects, lights, sky, background,
and some controllers, which control every aspect of the
randomization process.

and manipulations are applied to the rendered images.
Finally, the image augmentation technique is employed
to generalize the proposed classifier, as well as, image
augmentation increases the size of the training dataset.

The aim was to set up a versatile virtual scene that can
automatically develop a feasible arrangement of the objects.
To reach such a system, some objects are required such as
some 3D objects, lights, sky objects, and several controllers
that are used to control the properties of scene components.
The controllers provide mathematical relationships among
all objects in the scene. To avoid infeasible cases, some
constraints are considered. In fact, the constraints are small
codes written in Python, which control the randomization
process to prevent impractical setups. Figure 1 depicts a
schematic view of the mentioned procedural scene.

For evaluating the proposed approach in the real world,
the German Traffic Sign Recognition Benchmark (GTSRB)
dataset is selected. This dataset was captured in different
lighting situations. Some of them were captured on a sunny
day and some in shadow or bluish-morning-like lighting.
Moreover, there are some images that became overexposed
due to the reflective surface of the sign board. Also, there
can be seen motion blur in some images, indicating that the
pictures are captured while driving.

To achieve a comprehensive model that is capable of
classifying the different types of signs, the image generator
has to be very versatile with the ability to cover all of the
possible variations. Some of the variations applied on the
scene are listed as follows.

• Illumination: One of the main issues in rendering
photo-realistic images refers to the correct lighting of
the scene. In CG, the lighting procedure is almost
divided into two main parts, i.e., direct lighting and
indirect lighting. Direct light takes charge of the main
illumination, which usually casts sharp shadows on
objects, and on the other hand, indirect light is an
environmental light that is resulted from bouncing
rays. Since traffic signs are almost always placed
outdoors, they are mostly illuminated by the sun and

sky. The sun is considered a direct light, and the sky
is responsible for indirect lighting. In the real world
rules, both the sun angle and sky color are intertwined
(21). The sky color gradient varies according to the
sun’s position and some other factors such as the haze
and aerosol in the air. Simulation of the sun as an
infinite light source (direct lighting source) in most CG
applications is simple. The technique that is usually
used for indirect lighting simulation is referred to
as image-based lighting (IBL). In this method, a big
sphere or hemisphere surrounds the scene, and its
texture sends light rays into the scene. In this research,
the Preetham sky model was used to generate a virtual
sky. This model needs the sun position, the viewing
direction, and the turbidity factor to compute the color
of the texture pixels (22). Turbidity is defined as the
haziness of fluid-type materials. To achieve a different
range of sky models, the sun’s position is randomized
around the scene; moreover, for every run, a random
integer number between 2 and 10 is designated to the
turbidity factor. The sky color is allowed to affect the
background image to match the scene’s overall color.

• Position and rotation: By any run, the basic spatial
properties of the sign object, such as position and
rotation, change, but they never get out of the camera
view. Both camera and objects have a chance to relocate
or spin. By looking at the GTSRB images as the
reference, the minimum and maximum available space
around the sign object can be estimated. We just try to
limit the movement of the sign object, so that it sticks
in the middle of the frame.

• Motion blur and out of focus: Motion blur may
happen when we try to take a picture of fast-moving
objects. This phenomenon directly depends on the
shutter speed of a camera. Another effect is called
out of focus. This effect occurs when a certain object
is far from the camera’s focal distance. Both of the
effects above can be simply simulated by specific image
processing filters even after rendering. To simulate the
motion blur effect, usually, some filters are applied
to images that stretch the image along the moving
direction. In this research, the direction is selected
randomly but is almost near the horizontal line.

• Signboard damages and imperfections: Usually road
signs are exposed to physical damage and strikes.
These damages often cause deformation. To mimic this
effect, some deformers have been deployed. Deforming
is usually done by using displacement maps. These
maps are gray-scale noisy images projected onto object
UV coordinates and push polygons up or down
corresponding to the brightness of the projected map,
along polygon normal vectors. By every run, this map
is regenerated with a different noisy pattern.

• Dust and scratches: Rain, storm, snow, dust, and
other natural phenomena may dirty the signs and

https://doi.org/10.54646/bjcicn.2023.02

10 Naghipour and Pasbani

makes them unclear. Some controllers are designed to
simulate these types of effects by adding some random
pattern onto sign textures. For adding more details,
divers’ noisy images are deployed to fake dirtiness on
the sign boards. Also, some mask textures specify the
areas where this dirtiness should appear.

• Backdrop and environment: Each season has its own
visual effects on the objects’ appearance. In rendered
images, these effects can be realized by changing
the background image. An important factor to be
taken into account is that neural networks can learn
unwanted patterns such as backgrounds. Thus, we
should be aware of using repetitive backdrops as much
as possible. To prevent this side effect, the proposed
method uses one hundred different images; however,
the risk is yet probable by every 100 runs. Hence,
for every run, the position, scale, and rotation of
the background images are changed randomly. This
can guarantee that final rendered images will never
have the same background. These randomizations
are controlled by controllers in order to prevent
infeasible images.

• Shadows: The sign objects are placed in different
positions that may receive any type of shadows cast
by other objects. These shadows, when analyzed
numerically, have a significant effect on their
appearance and color. To implement these shadows in
a virtual world, several objects with different shapes
and sizes have been settled in the scene. With each run,
some properties of these objects, such as positions,
rotations, distances, and visibilities, become random.
Shadows play a significant role in the overall looking
of any image. For more clarity, in Figure 2, the same
scene has been rendered four times just by changing in
received shadows. Every time each image’s histogram
has been plotted. As seen on these plots, most pixel
values were changed while semantically all of these
images represent the same sign. In addition to the
light and shadows, any change in position, rotation,
scale, shear, color, and other properties will overturn
pixel data. Thus, designing a classifier that remains
invariant to all these variations is a big challenge both
in image processing and computer vision fields. So
the goal is to provide a comprehensive dataset that
is able to include the road signs in any condition.
This makes the classifier behave invariant toward
unnecessary information.

Image processing filters

Pictures captured by ordinary cameras often contain some
noise. This noise mostly can be seen explicitly in low-light
situations. Also in rendering, due to indirect illumination,
inherently all rendered images are noisy. However, for

emphasizing, some subtle noise is randomly added to the
rendered images.

By browsing GTSRB data more accurately, it can be seen
that some images are very dark and some images are very
bright. Despite the different lighting situations regarded in
the 3D scene rendering step, some extra darkening and
brightening filters are applied to some rendered images. As
mentioned before, the motion blur and defocus can be faked
by 2D filters. In this step, these effects are also applied to
randomly selected rendered images.

After many trials and errors, it was found that the
mentioned filters help the final result and accuracy get better.

Image augmentation

At the final step of dataset preparation, all the rendered
images are candidates for applying augmentation. In this
step, all the variations supposed to be applied on rendered
images are offline, and there is no access to 3D scene
options anymore. Intense variations on images are applied
because the GTSRB dataset includes images captured in very
diverse situations. These situations, even with the human
eye, are hard to recognize. In general, image augmentation
leads a robust training and a reduction in overfitting.
The augmentation used in this work changes almost every
property of rendered images, such as position, rotation, scale,
shear, crop, contrast, distortion, random masking shapes,
and some color perturbation. In Figure 3, some augmented
images are illustrated.

Eventually, the proposed synthetic image generator
produced 2,500 images for each class. Since this generator is
entirely procedural, it is possible to create an infinite number
of images without much effort. Moreover, this method avoids
repetitive images in the generated dataset. Of these 2,500
images, 2,000 of them were allocated for training and 500 for
validation (per class).

To assess the proposed method, 12 classes of the GTSRB
dataset are selected. Intentionally, some challenging and
difficult classes are chosen so that they are similar to each
other in terms of shape, figure, or color. In Figure 4, these
selected classes are illustrated. These 12 classes in the GTSRB
dataset aggregately contain about 10,000 images that will be
considered as a test set to evaluate the classifier efficiency.

Setting up DCNN architecture

CNN is one of the major types of feed-forward neural
networks that can track the spatial position of elements in
the images as detection features (23). These features carry
meaningful data, which play the main role in detection and
recognition tasks. This advantage makes the CNNs more
efficient than the Multi-Layer Perceptron (MLP) in image
classification tasks. Some other types of layers are embedded

10.54646/bjcicn.2023.02 11

FIGURE 2 | Histogram of an object with four different shadow situations. Shadow cast by the environment; changes the entire distribution of
pixels’ data.

FIGURE 3 | Heavy augmentation is applied to rendered images. Most of the image properties have been changed during this operation, such
as position, scale, crop, distortion, and color.

FIGURE 4 | Selected sign types for generating synthetic images.

between the convolution layers to reduce dimension (pooling
layer) or add non-linearity (activation function) to the layer’s
output (24).

Since this work is aimed at providing the fact that synthetic
data can be used to train the CNN models, the utilized model
in this work is not precisely optimized.

The proposed DCNN architecture contains four blocks
before connecting to the two fully connected layers. There are
two convolution layers with 32 filters in the first block. Then,
batch normalization is added to speed up and improve the

accuracy of the training process (25). Later, a max pooling
with the pool size of (2, 2) and stride 2 shrinks the size of
the first block from 80 80-pixel to 40 40-pixel. After the
first dense layer, a dropout layer is added as the regularization
method to improve the generalization errors of the network.
Additionally, dropout has a tremendous role in avoiding
the overfitting problem (26). For the first two blocks, two
convolution layers are successively used without pooling
between them. One reason is the result of using pooling
after each convolution layer, and the size of the tensors
immediately gets smaller, so, some significant data may be
lost. Besides, the consecutive convolution layers result in
more spatial data in the feature map (27). The numbers of
the filters used for the next convolution layers are 64, 64, 128,
and 256, respectively.

In this work, the “max pooling” method is used for
the pooling layer. All the utilized activation functions are
Rectified Linear Units (ReLUs). These blocks finally ended
with two fully connected layers. These layers usually are
used to collect and optimize scores for each class. The first
fully connected layer contains 128 neurons, and a batch

https://doi.org/10.54646/bjcicn.2023.02

12 Naghipour and Pasbani

normal and dropout follow it. The last layer is the second
fully connected with only 12 neurons, and softmax is used
as the activation function. This layer decides that the input
image belongs to which class. The mentioned architecture
was schematically plotted and can be seen in Figure 5.

The proposed model is ready to receive the provided
synthetic images as input to begin the training process. But
for achieving optimum weights and biases, a proper loss
function must be established. Imagine that x is an instance
image vector and sk (x) is the score of class k which softmax
computes, so there is a linear relationship between x and the
score as below (28):

sk(x) = xTθ(k) (1)

In Equation (1), θ(k) represents parameter vector for class
k. We need the probability of belonging to class k, so the
softmax function at the end of the model chain calculates this
probability (p̂k) (28):

p̂k =
esk(x)∑K

j = 1 esj(x)
(2)

where K is the number of classes.
Since the softmax predicts only one class per time, this is

suitable for our case as every sign only belongs to one class.
Cross entropy is a proven way for classification problems to
define a loss function (28):

J (2) = −
1
m

m∑
i = 1

K∑
k = 1

y(i)
k log

(
p̂(i)

k

)
(3)

Now the cost function J (2) can be obtained by forming Eq.
(3). In this equation, y(i)

k is the true label of instance i that
belongs to class k. This value is 1 if ith instance belongs to the
class k and 0 in other cases. To obtain the gradient vector of
class k, it needs to calculate the gradient of the cost function
with respect to kth parameter (θ(k)) (28):

∇θ(k) J (2) =
1
m

m∑
i = 1

(p̂(i)
k −y(i)

k)x(i) (4)

Now using one of the gradient descent family optimizers,
the model finds the parameters 2 that minimize the cost
function. In fact, these parameters are the filters and other
types of learnable variables (28).

Experiments and results

The designed synthetic data generator is capable of
generating any number of images with any essential
dimension. A total of 80 pixels for both height and width are
chosen. In total, 24,000 images are included in training the

proposed DCNN model. Figure 5 (1&2) shows the train and
validation loss/accuracy over 200 epochs.

As seen in Figure 6 around epoch number 200, the
model almost converges, and validation loss and accuracy
are in an acceptable situation in terms of overfitting. To
test the dataset, corresponding classes from the GTSRB
are used. In the machine learning field and especially
in supervised machine learning, the confusion matrix is
considered one of the significant visualization methods for
statistical classification tasks (29).

The confusion matrix for our proposed model on the test
dataset is depicted in Figure 7. Classes that are more close to
each other are confused with similar classes.

By referring to the plotted confusion matrix in
Figure 7(1&2), it is clear that predicting classes 3 and 4
leads to higher errors than others. The first reason refers
to the appearance of the two mentioned classes. They are
very close to each other. The second reason refers to the
GTSRB image size and aspect ratio. Some of the images of
this dataset are very small in size and also are non-uniform
in height and width ratio, while the generated train dataset is
entirely square in size (80 × 80 pixels).

On the GTSRB website, recent benchmark competition
results can be observed. Some of these results, close to this
work result, are listed in Table 1. The main characteristic
of the proposed method with other listed methods on the
GTSRB website is the training dataset type. Most of them
used GTSRB’s own training dataset; however, in this work,
the synthetic dataset is generated and used to train the
model. Some real-life datasets, such as GTSRB, are biased in
terms of distribution among classes; nevertheless, our dataset
was evenly distributed (2,000 images per class). This may
affect the decision-making results. Of course, sometimes this
could be intentional because the distribution over classes is
not even in real-life situations. For example, the number of
priority signs in the city is normally much more than the
number of roundabout signage. The obtained results show
that the DCNN gives the best results among other image
classification methods. Notably, DCNN architecture shows
more than 91.91% accuracy in the GTSRB dataset with no
view of any real traffic sign image.

Conclusion

Deploying machine learning in industry-level production
is required to provide an exclusive dataset that meets the
requirements. Providing labeled ground-truth datasets for
computer vision tasks is usually expensive, time-consuming,
and labor-intensive. Furthermore, there are some cases that
create a real dataset that is not safe or practically impossible.
Using CAD models is another option, but creating desired
models one by one in most cases becomes more expensive
than providing real datasets.

10.54646/bjcicn.2023.02 13

FIGURE 5 | Schematic diagrams of proposed model layers. This architecture is comprised of convolution, pooling, batch normalization,
dropouts, and fully connected layers. Input images have 80 pixels for both height and width.

To cover the challenge in this paper and develop a
synthetic dataset for the traffic sign recognition task, a
procedural method was used. By using computer graphic
tools, the proposed method facilitates generating numerous
images that are precisely analogous to real-life instances.
Moreover, a well-structured DCNN architecture was set up
that decently fulfilled the classification task. Without seeing

FIGURE 6 | Model almost convergence and validation, loss, and
accuracy.

any real data, this classifier could categorize the real-world
GTSRB dataset with more than 91.91% accuracy.

The provided dataset has more details than the
requirements of the GTSRB dataset. We took many details
into account that might not be necessary, but it made the
classifier more reliable for complicated situations. Rendered
images and real pictures captured by a camera intrinsically
contain many dissimilarities. Using synthetic images to train
machine learning models requires narrowing this similarity
gap. Augmentation and other image processing filters
are helpful in enhancing accuracy. Additionally, without
augmentation and dropout, overfitting and generalization
issues would be bold. For the next research, we decide
to utilize this procedure for more complicated tasks like

FIGURE 7 | Normalized confusion matrix for the German Traffic Sign
Recognition Benchmark (GTSRB) dataset.

https://doi.org/10.54646/bjcicn.2023.02

14 Naghipour and Pasbani

TABLE 1 | Comparison of the proposed method with other methods
according to the German Traffic Sign Recognition Benchmark
(GTSRB) benchmark (30).

Team Method Accuracy %

...
72 Italian-crash Multi dataset algorithm 83.08
12 TDC CVOG + CCV + NN (Team 2) 82.67
11 TDC CVOG + CCV + NN (Team 1) 82.37
Our method Synthetic data + DCNN 91.91
74 TDC CVOG + ANN (Team 3) 81.80
97 RMULG Subwindows + ETGRAY + LIBLINEAR 79.71
134 olbustosa HOG_SVM 76.35
...

road and street object detection. Clearly, such a procedure
requires higher attempts to set up a system that can provide
credible rendered images.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Author contributions

RP conducted an initial literature review and data collection,
performed the experiments, prepared the results, and
drafted the manuscript. AN helped in writing–editing and
conceptualization, analyzed the result, and contributed
to supervision. Both authors read and approved the
final manuscript.

References

1. Li L, Huang W, Liu Y, Zheng N, Wang F. Intelligence testing for
autonomous vehicles: a new approach. IEEE Trans Intell Vehic. (2016).
1:158–66. doi: 10.1109/TIV.2016.2608003

2. Gidado UM, Chiroma H, Aljojo N, Abubakar S, Popoola SI, Al-
Garadi MA. A survey on deep learning for steering angle prediction
in autonomous vehicles. (2020) IEEE Access. (2020) 8:163797–817. doi:
10.1109/ACCESS.2020.3017883

3. Arnold E, Al-Jarrah OY, Dianati M, Fallah S, Oxtoby D, Mouzakitis
A. A survey on 3D object detection methods for autonomous driving
applications. IEEE Trans Intell Trans Syst. (2019) 20:3782–95. doi: 10.
1109/TITS.2019.2892405

4. Gjoreski H, Ciliberto M, Wang L, Morales FJO, Mekki S, Valentin S,
et al. The university of sussex-Huawei locomotion and transportation
dataset for multimodal analytics with mobile devices. IEEE Access.
(2018) 6:42592–604. doi: 10.1109/ACCESS.2018.2858933

5. Wang T, Wu DJ, Coates A, Ng AY. . End-to-End Text Recognition with
Convolutional Neural Networks. Proceedings of the 21st International
Conference on Pattern Recognition. Tsukuba (2012). p. 3304–8.

6. Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazırbas C, Golkov
V. FlowNet: learning Optical Flow with Convolutional Networks.
Proceedings of the IEEE International Conference on Computer Vision.
Santiago: IEEE (2015). p. 2758–66. doi: 10.1109/ICCV.2015.316

7. Mayer N, Ilg E, Hausser P, Fischer P. A Large Dataset to Train
Convolutional Networks for Disparity, Optical Flow, and Scene Flow
Estimation. Proceeding of the IEEE Conference on Computer Vision and
Pattern Recognition. Piscataway, NJ: IEEE (2016). p. 4040–8. doi: 10.
1109/CVPR.2016.438

8. Ros G, Sellart L, Materzynska J, Vazquez D, Lopez AM. The
SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic
Segmentation of Urban Scenes. Proceeding of the IEEE Conference on
Computer Vision and Pattern Recognition. (2016). p. 3234–43. doi: 10.
1109/CVPR.2016.352

9. Handa A, Patraucean V, Badrinarayanan V, Stent S, Cipolla R.
Understanding Real World Indoor Scenes with Synthetic Data.
Proceeding of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway, NJ: IEEE (2016). p. 4077–85. doi: 10.1109/
CVPR.2016.442

10. Tsai C, Tsai S, Hsu Y, Wu Y. Synthetic Training of Deep CNN
for 3D Hand Gesture Identification. Proceedings - 2017 International
Conference on Control, Artificial Intelligence, Robotics and Optimization,
ICCAIRO. Piscataway, NJ: IEEE (2017). p. 165–70. doi: /10.1109/
ICCAIRO.2017.40

11. Maldonado-Bascon S, Lafuente-Arroyo S, Gil-Jimenez P, Gomez-
Moreno H, Lopez- Ferreras F. Road-sign detection and recognition
based on support vector machines. IEEE Trans Intell Trans Syst. (2007)
8:264–78. doi: 10.1109/TITS.2007.895311

12. Wali SB, Hannan MA, Hussain A, Samad SA. An automatic traffic sign
detection and recognition system based on colour segmentation, shape
matching, and SVM. Math Prob Eng. (2015) 2015:1–11. doi: 10.1155/
2015/250461

13. Kuang X, Fu W, Yang L. Real-time detection and recognition of road
traffic signs using MSER and random forests. Int J Online Eng. (2018)
14:34–51. doi: 10.3991/ijoe.v14i03.7925

14. Ellahyani A, Ansari ME, Jafari IE. Traffic sign detection and recognition
based on random forests. Appl Soft Comput. (2016) 46:805–15. doi:
10.1016/j.asoc.2015.12.041

15. Liang Z, Shao J, Zhang D, Gao L. Traffic sign detection and recognition
based on pyramidal convolutional networks. Neural Comput Appl.
(2019) 32:6533–43. doi: 10.1007/s00521-019-04086-z

16. Shustanov A, Yakimov P. CNN design for real-time traffic sign
recognition. Proc Eng. (2017) 201:718–25. doi: 10.1016/j.proeng.2017.
09.594

17. Jaderberg M, Simonyan K, Vedaldi A, Zisserman A. Synthetic data
and artificial neural networks for natural scene text recognition. arXiv
[Preprint]. (2014) doi: 10.48550/arXiv.1406.2227

18. Peng X, Sun B, Ali K, Saenko K. Learning Deep Object Detectors
from 3D Models. Proceedings of the IEEE International Conference on
Computer Vision. Piscataway, NJ: IEEE (2015). p. 1278–86. doi: 10.1109/
ICCV.2015.151

19. Sun B, Saenko K. From virtual to reality: fast adaptation of virtual object
detectors to real domains. Proc Br Mach Vis Conf. (2014). doi: 10.5244/
C.28.82

20. Su H, Qi CR, Li Y, Guibas LJ. Render for CNN: Viewpoint Estimation in
Images using CNNs Trained with Rendered 3D Model Views. Proceeding
of the IEEE International Conference on Computer Vision. Piscataway,
NJ: IEEE (2015). p. 2686-2694. doi: 10.1109/ICCV.2015.308

21. Satilmis P, Bashford-Rogers T, Chalmers A, Debattista K. A machine-
learning-driven sky model. IEEE Comput Grap Appl. (2017) 37:80–91.
doi: 10.1109/MCG.2016.67

22. Jung J, Lee JY, Kweon IS. One-day outdoor photometric stereo using
skylight estimation. Int J Comput Vis. (2019) 127:1126–42. doi: 10.1007/
s11263-018-01145-1

https://doi.org/10.1109/TIV.2016.2608003
https://doi.org/10.1109/ACCESS.2020.3017883
https://doi.org/10.1109/ACCESS.2020.3017883
https://doi.org/10.1109/TITS.2019.2892405
https://doi.org/10.1109/TITS.2019.2892405
https://doi.org/10.1109/ACCESS.2018.2858933
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/CVPR.2016.438
https://doi.org/10.1109/CVPR.2016.438
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1109/CVPR.2016.442
https://doi.org/10.1109/CVPR.2016.442
https://doi.org//10.1109/ICCAIRO.2017.40
https://doi.org//10.1109/ICCAIRO.2017.40
https://doi.org/10.1109/TITS.2007.895311
https://doi.org/10.1155/2015/250461
https://doi.org/10.1155/2015/250461
https://doi.org/10.3991/ijoe.v14i03.7925
https://doi.org/10.1016/j.asoc.2015.12.041
https://doi.org/10.1016/j.asoc.2015.12.041
https://doi.org/10.1007/s00521-019-04086-z
https://doi.org/10.1016/j.proeng.2017.09.594
https://doi.org/10.1016/j.proeng.2017.09.594
https://doi.org/10.48550/arXiv.1406.2227
https://doi.org/10.1109/ICCV.2015.151
https://doi.org/10.1109/ICCV.2015.151
https://doi.org/10.5244/C.28.82
https://doi.org/10.5244/C.28.82
https://doi.org/10.1109/ICCV.2015.308
https://doi.org/10.1109/MCG.2016.67
https://doi.org/10.1007/s11263-018-01145-1
https://doi.org/10.1007/s11263-018-01145-1

10.54646/bjcicn.2023.02 15

23. Bilal A, Jourabloo A, Ye M, Liu X, Ren L. Do convolutional neural
networks learn class hierarchy?. IEEE Trans Vis Comput Grap. (2018)
24:152–62. doi: 10.1109/TVCG.2017.2744683

24. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied
to document recognition. Proc IEEE. (1998) 86:278–324. doi: 10.1109/5.
726791

25. Bjorck J, Gomes C, Selman B, Weinberger KQ. Understanding batch
normalization. Adv Neural Inform Process Syst. (2018) 7694–705.

26. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with
deep convolutional neural networks. Commun ACM. (2017) 60:84–90.
doi: 10.1145/3065386

27. Zhang Z, Wang H, Liu S, Xiao B. Consecutive convolutional activations
for scene character recognition IEEE Access. (2018) 6:35734–42. doi: 10.
1109/ACCESS.2018.2848930

28. Géron A. Hands-on machine learning with scikit-learn, keras, and
tensorflow: concepts, tools, and techniques to build intelligent systems. 2th
ed. Sebastopol, CA: O’Reilly Media (2019).

29. Stehman SV. Selecting and interpreting measures of thematic
classification accuracy. Remote Sens Environ. (1997) 62:77–89.
doi: 10.1016/S0034-4257(97)00083-7

30. INI. German traffic sign benchmarks. (2019). Available online at: https://
benchmark.ini.rub.de/gtsrb_results_ijcnn.html.

https://doi.org/10.54646/bjcicn.2023.02
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ACCESS.2018.2848930
https://doi.org/10.1109/ACCESS.2018.2848930
https://doi.org/10.1016/S0034-4257(97)00083-7
https://benchmark.ini.rub.de/gtsrb_results_ijcnn.html.
https://benchmark.ini.rub.de/gtsrb_results_ijcnn.html.

	Recognizing traffic signs with synthetic data and deep learning
	Introduction
	Related works
	Synthetic image generation
	Image processing filters
	Image augmentation
	Setting up DCNN architecture
	Experiments and results
	Conclusion
	Conflict of interest
	Author contributions
	References

