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Visualization of mathematical models of multidimensional objects implicitly defined as a surface F (X) = 0 is
performed using two- and three-dimensional projections obtained by rotating and shifting coordinates. In the
new coordinates, the model has the form y = f (x) where one of the variables is dependent (this is the direction
of design), and the rest make up the vector of independent variables. A new model is often more convenient
than the original one, but not all design directions adequately reflect its properties since it is possible to transfer
projections of several points of the original surface into one (gluing). For some directions (directions of ambiguity),
the projection may consist of points with several preimages (corresponds to the ambiguity of the function f). In
this case, the projection is divided into the area of ambiguity and the area of unambiguity. For other directions
(directions of uniqueness), the entire projection is the domain of uniqueness. The paper investigates the evolution
of design directions and areas of ambiguity and unambiguity of projections of complex objects. A criterion for
choosing the direction of unambiguity is proposed in which all points of the model remain different, i.e., multiplicity
visually disappears (“hidden multiplicity”). Examples of applying the criterion for models of objects of various
geometries are given.

Keywords: direction of ambiguity, direction of unambiguity, multiplicity, hidden multiplicity, design reversibility,
local and global reversibility

Introduction

Algorithms artificial and computational intelligence systems
(as subsets of it) use mathematical models related to the
search for hidden patterns in incomplete data, pattern
recognition and decision-making under uncertainty (1–6).
For example, the book by M.T. Jones (5) is devoted to the
methods of developing “smart” algorithms. The monograph,
which has become a "classic of the genre" (6), presents
modern achievements and ideas that have been formulated
in the research of many recent years, which have become an
incentive for the development of artificial intelligence.

When solving such problems, algorithms for visualizing
objects may be needed, mathematical models of which may
not have an explicit description (solutions of systems of
nonlinear equations, etc.). The simplest stationary models
of such objects can be described by algebraic polynomial

equations (7) relating to various subject areas of science
(engineering, physics, chemistry, and biology) (8–12). When
the degree of a polynomial is higher than four, the
solutions of even such equations cannot be expressed
exactly, but it is known that the number of solutions
(roots) of such equations in the complex domain is equal
to the degree of the polynomial (the main theorem of
algebra) (13).

In general, mathematical models of objects in the space Rn

cannot be presented explicitly, because their exact solutions
are not known or cannot be expressed in a constructive
form (14). In this regard, it is of interest to study the
evolution of projections of solutions of multidimensional
models of objects of various geometric structures. In practice,
the projections located in a certain area of visibility of the
image recognition system (accessibility zone, physicality) are
of the greatest interest.
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The informative value of visualization depends on the
direction of designing the coordinate representation on the
parameter space. Depending on the chosen direction of
design, two qualitatively different areas of the object image
(uniqueness and multiplicity) can be distinguished. In the
domain of multiplicity, each point has several prototypes,
corresponds to several (isolated) points of the original model.

In the area of uniqueness, the various points of the original
model remain different, do not mix with each other. The
area of multiplicity, if it exists, is an objective disadvantage
of choosing the direction of design, because the parameters
of the original model cannot be unambiguously restored
by the projection parameters. Let’s call the direction of
design, in which the area of multiplicity is not empty, the
direction of ambiguity.

The mathematical model of any nonlinear object admits
multiplicity with a certain choice of design direction. Under
certain conditions, there may be such design directions
(directions of unambiguity) that each line of this direction
intersects with the coordinate representation of the model at
no more than one point. The purpose of the article is to create
a method for finding the directions of unambiguity of design
for models given a surface in Euclidean space.

Research elaborations

Let’s consider the area (domain) of the multiplicity of
solutions of polynomial equations with parameters from the
point of view of an intelligent pattern recognition system.
The most informative (3D) visual representation of this
area can be synthesized in the form of projections of some
multidimensional object along some direction. If the model
admits the existence of a domain of ambiguity with some
choice of design direction, then such a choice leads to the
so-called “hidden multiplicity.” For this model, with such a
choice of direction, it is impossible to restore the original
model unambiguously according to the given values of the
model parameters, i.e., some points of the original model
are "stuck together", represented as the same value. The
model with ambiguity, after such a design, turned into an
unambiguous model.

Consider the feasibility of hidden multiplicity on the
example of a model with one phase variable x, the stationarity
equation of which is the sum of several homogeneous
components, each of which is a polynomial of some degree
n with coefficients a0, . . . , an, depending on the parameters
of model (0 < x < 1) :

f (x) = a0xn
+ a1xn−1 (1− x)+ · · · + an−1x(1− x)n−1

+an(1− x)n (1)

The stationary state (SS) is the root of function (1).
For example, the function x (1− x) − 2/9, of two
homogeneous components x (1− x) I I/ −2/9 has two SS
(x, 1− x) =

( 1
3 , 2

3
)

and ( 2
3 , 1

3 ).

To measure the parameters of the model, a certain
function is used, which can also be represented by the sum
of homogeneous polynomials of degree m (these degrees
may not coincide with the degrees of uniformity of the n
stationary equation)

g (x)= b0xm
+ b1xm−1 (1− x)

+ · · · + bn−1x(1− x)m−1
+ bm(1− x)m (2)

For example, the function g (x) = x2(1− x)2 takes the
same meaning in two SS (x, 1− x) =

( 1
3 , 2

3
)

and
( 2

3 , 1
3
)

for
any parameter values. This means that the multiplicity exists,
but it is hidden and cannot be observed on the graph of the
dependence of g(x) on any of the parameters.

Let’s find the conditions under which the multiplicity
becomes hidden. To do this, it is enough that when replacing
x→ 1− x, the function g(x) does not change the value, and
the function f (x) retains the module:

f (1− x) ≡ ± f (x), g (1− x) ≡ g(x) (3)

Indeed, when executing (3), the function f (x), if it has a
root x0, then it also has a root 1− x0, i.e., there is a MSS. In
this case, the function g (x) in both of these SS has the same
value, i.e., the multiplicity is hidden. Note that the functions
g (x) (and the functions f (x) in (3), when choosing the plus
sign) satisfying (3) are returnable (palindromic), i.e., the list
of their coefficients, read from right to left and from left to
right, is the same. For example, if we write condition (3)
for the polynomial g (x), then the monomes symmetric with
respect to the beginning and end will move into each other
(swap places), leaving the value of the polynomial unchanged
by bm−p = bp (the reversibility of the polynomial):

bpxm−p(1− x)p
+ bm−pxp(1− x)m−p

→ bpxp(1− x)m−p

+bm−pxm−p(1− x)p
+ bm−pxm−p(1− x)p

By bm−p = bp (the reversibility of the polynomial). For the
polynomial f (x), this is also true when choosing the plus sign
in (3). If the minus sign in (3) is selected, then the polynomial
f (x) will be anti-returnable

apxm−p(1− x)p
+ am−pxp(1− x)m−p

→ apxp(1− x)m−p

+am−pxm−p(1− x)p

on condition am−p = −ap. Thus, for the occurrence of
latent multiplicity, it is sufficient to fulfill the conditions of
symmetry of the coefficients for monomials of polynomials
(2) and (3): ∣∣am−p

∣∣ = ∣∣ap
∣∣ , bm−p = bp (4)

The conditions (4) also apply to functions having several
homogeneous components. For specific objects, conditions
(4) are equality-type conditions on parameters. This means
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that hidden multiplicity will occur when visualizing such
objects, not in the entire space of acceptable parameter
values but on some surface in this space. Hiding is related
to the geometry of this surface and the “unsuccessful”
choice of the direction of movement along the surface while
remaining on it.

There is also a deeper and more common cause of latent
multiplicity: “flat” phase multiplicity. Some design directions
(directions of unambiguity) may have the property that any
straight line in this direction intersects the surface of the
model at no more than one point. If such a direction exists
for a model that admits multiplicity, then the parameters of
this initial model cannot be restored unambiguously.

Let’s consider the geometry of the multiplicity in
the example of a polynomial with two homogeneous
components:

f (x) = k1 (1− x)− k−1x− k2x(1− x)2
= 0, 0 < x < 1

(5)
This is the equation of some surface in a 4D space, where the
3D abscissa axis consists of three parameters k1, k−1, and k2,
and the 1D ordinate axis is the value of x (the objective
function). The projection of this surface onto the abscissa axis
represents the domain of admissibility—the set of positive
values k1, k−1, and k2, for which the equation of stationarity
has at least one solution x. The domain of multiplicity is a
part of the domain of admissibility in which each point has
at least two prototypes—two different points of the surface,
projections projected onto this point.

Let’s find the geometric shape of the areas of acceptability
and multiplicity for this example, assuming that the
parameters take only positive physical values and the phase
variable x varies in the range from 0 to 1 (dimensionless).
Then in the band 0 < x < 1, we need to find the intersection
of the domain of admissibility and the domain of multiplicity
with a positive octant k1 > 0, k−1 > 0, k2 > 0. Since the
function (5) has a value of k1 > 0 at zero and −k−1 < 0
at one, then, being continuous, it must take a 0 value at the
interval 0 < x < 1, at least at one point of this interval. This
means that the area of validity coincides with all octants. In
other words, for any positive values of the parameters, there
is at least one stationary state.

The multiplicity domain is characterized by the presence
of two or more solutions of equation (5) in the unit interval.
For the multiplicity of solutions of the equation f (x) = 0,
where f (x) is a continuously differentiable function with the
conditions f (0) > 0 > f (1), it is necessary and sufficient
that in this interval there exists such a root x0 of function f (x)

in which the derivative is positive or equal to zero:

f (x0) = 0, f
′

(x0) ≥ 0, 0 < x0 < 1 (6)

Condition (6) is a multiplicity criterion for objects described
by one independent phase variable. There is no explicit
analog of this criterion for multidimensional objects. In
our case, in the interval (0, 1) there are one or three

roots x0, x1, x2 (we can assume that x0 is the middle root
0 < x1 < x0 < x2 < 1). Then, the multiplicity criterion
(6) takes the form (0 < x0 < 1):

k1 (1− x0)− k−1x0 − k2x0(1−x0)
2
= 0,

−k1 − k−1 − k2 (1− 3x0) (1− x0) ≥ 0 (7)

Results

The informativeness of the visualization of multiplicity
depends on the coordinate representation of the model and
the direction of its design on the parameter space. Some
directions allow you to hide the multiplicity. Each straight
line of such a “correct” direction of unambiguity intersects
the coordinate representation of the model at no more than
one point. We present a method for finding such design
directions for areas of multiple surfaces in Euclidean space.

Parametrization in 3D parameter space
(a1, a−1, x0)

We express k1 from the equation in the relations (7) and
substitute it into the inequality, we get:

k1 =
k−1x0

1− x0
+ k2x0 (1− x0) , (8)

k−1

k2
≥ (2x0 − 1)(1− x0)

2, 1/2 < x0 < 1. (9)

Relation (8) distinguishes a surface in 4D space
(k1, k−1, k2, x0), and (9)—its projection on the 3D axis
of the abscissa (k−1, k2, x0). In this case, k1 is a 1D
ordinate axis. The dimension can be reduced if, instead
of the parameters k1, k−1, k2, we go to the relative values
a1 = k1/k2, a2 = k−1/k2. Then the projection of the
model onto the domain (a1, a−1, x0) appears as the equation
of a 2D surface in 3D space

a1 =
a−1x0

1− x0
+ x0(1− x0), (10)

parameterized by two parameters (a−1, x0), varying within
the following limits

a−1 ≥ (2 x0 − 1)(1− x0)
2, 1/2 < x0 < 1. (11)

Relation (11) distinguishes that part of the projection, which
is the area of multiplicity.

The formulas for the extreme roots x1, x2 have the form:

x1 = 1− 1
2 x0

(
1+
√

1− 4a−1
x02(1+x0)

)
,

x2 = 1+ 1
2 x0

(
1+
√

1− 4a−1
x02(1+x0)

)
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We exclude the parameter x0 in the relations (10, 11), i.e.,
we find the projection of the multiplicity domain on the
plane (a−1, a1). For a fixed value a−1, the value x0 changes
in the interval 1/2 < x0 < 1 so that the inequality
a−1 ≥ (2x0 − 1)(1− x0)

2 is satisfied. Graph of the
function max(a−1) = (2x0 − 1)(1− x0)

2 in the interval
1/2 < x0 < 1 is shown in Figure 1. For a fixed (within
0 < a−1 ≥ 1/27) value of a−1 the parameter a1 takes the
value described by formula (10), where x0 changes occur in
some interval within the segment [1/2, 1], which depends on
the selected value of a−1. In Figure 1, this interval is shown
when a−1 = 0.01. The derivative of a1, which is a function
(10) of x0, has the form:

a′x0 =
a−1

(1− x0)
2+1− 2x0 (12)

This derivative, taking into account (10), is not positive in
the parameter domain under consideration. Therefore, with
a fixed a−1, the value of a1, as a function of x0, monotonically
decreases, taking values on a certain segment. Thus, on the
plane (a−1, a1), the projection of the multiplicity domain
looks as shown in Figure 2. For the lower and upper branches
of the projection of the multiplicity domain onto the plane
(a−1, a1), exact equations can be obtained, but due to their
cumbersomeness, we do not give them here. The surface of
stationary states as a whole is all three roots together on one
graph in the space (a−1, a1, x), as shown on Figure 3.

The stationary surface of the model given by equation (5)
is a 2D manifold in space (a−1, a1, x). It has three branches
and can be described through the parameters (a−1, x0) using
three local maps (coordinate systems): average a−1 = a−1,
a1 =

a−1x0
1−x0
+ x0(1 − x0), x = x0, lower a−1 = a−1, a1 =

a−1x0
1−x0
+x0(1−x0), x = 1− 1

2 x0

(
1+

√
1− 4a−1

x02(1−x0)

)
, upper

a−1 = a−1, a1 =
a−1x0
1−x0

+ x0(1 − x0), x = 1 −
1
2 x0

(
1−

√
1− 4a−1

x02(1−x0)

)
. These branches are located above

FIGURE 1 | Graph of the function max(a−1) = (2x0 − 1)(1− x0)2 in
1/2 < x0 < 1.

FIGURE 2 | Projection of the multiplicity domain at a fixed a−1.

FIGURE 3 | The surface of stationary states as a whole is all roots in
space (a−1, a1, x).

the area 0 < a−1 = (2x0 − 1)(1− x0)
2, 1/2 < x0 < 1.

The middle branch merges with the lower one at a−1 =

(2x0 − 1)(1− x0)
2, 1/2 < x0 = 2/3. The middle branch

merges with the upper one at a−1 = (2x0 − 1)(1− x0)
2,

2
3 = x0 < 1. All three branches merge when a−1 = 1/27,
a1 = 8/27, x0 = 2/3.

Note that (10, 11) contain a non-strict inequality, and it
may seem that this variety has an edge, which, if it exists, is a
line:

a−1 = (2x0 − 1)(1− x0)
2, a1 = 2x0

2(1− x0),

x = x0, 1/2 < x0 < 1. (13)

We show that this manifold has no edge. To do this, we
will choose a substitution of variables in which our manifold
will be diffeomorphic to the plane. This is achieved by a
combination of two techniques.
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FIGURE 4 | The circle x2+y2 = 1 preserves multiplicity in any direction
of design.

A non-strict inequality of the form g ≤ 0 is replaced by
the equation g = p2, where p is a new variable. A strict
inequality of the form g > 0 is replaced by the equation
g = ep. In each of these cases, the dimension of the model
and the number of equations increase by 1.

The double inequality 0 < g < 1 leads to two new
equations g = ep, ep

+ eq
= 1, including two new

variables p, q whose values are arbitrary. We apply these
transformations to the relations (10) and (11) and obtain the
following representation of the multiplicity domain:

a1 = ep−1
x0

1− x0
+ x0 (1− x0) ,

ep−1 + p2
2
= (2x0 − 1) (1− x0)

2, (14)
1
2
+ ep3 = x0, ep3 + ep4 =

1
2

Thus, the multiplicity domain is a 2D manifold in space
(a1, p−1, x0, p2, p3, p4). At the same time, there are no
restrictions on these six variables. The expression of four of
the variables through the other two (p2, p3) shows

a1 = 2
(

1
2
+ ep3

)2 (
1− 2ep3

)
− p2

2 1+ 2ep3

1− 2ep3
,

ep−1 = 2ep3
(
1− ep3

)2
− p2

2, (15)

x0 =
1
2
+ ep3 , ep4 =

1
2
− ep3 ,

that the region of multiplicity is mutually unambiguously
mapped to the plane (p2, p3).

Choosing the “right” direction of design

Let’s be given some equations of a stationary surface
f (x) = 0 in space (x). Let’s consider all the projections of

FIGURE 5 | The multiplicity graph (parabola) on a single segment:
(A) with slope d < 0, multiplicity is hidden; (B) with slope 0 < d < 2,
multiplicity cannot be hidden; and (C) with slope d > 2, multiplicity is
hidden.
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FIGURE 6 | The multiplicity graph (bell) on a single segment: (A) with
slope d < mn, multiplicity is hidden; (B) with slope mn < d < mx,
multiplicity cannot be hidden; (C) with slope d > mx, multiplicity is
hidden.

FIGURE 7 | The derivative of a parametric function and its minimum
value.

this surface in the direction of some design vector (ε) and the
orthogonal design plane to it. By shifting this plane along the
projection vector, if necessary, we can consider it a tangent
plane to a stationary surface at some point (x0).

It is obvious that if the design, with its chosen direction,
is reversible (i.e., the prototype of each projection point
is unique) on the entire projection area, then it must be
reversible and locally, in the neighborhood of the point (x0).
It is also obvious that the projection is locally reversible only
if it is directed along the gradient f ′ (x) of the function. Thus,
among all the directions of design locally, in the vicinity of
the point (x0), only design in one direction is reversible; all
the others lead to ambiguity.

This locally reversible design may or may not be globally
reversible (only in this case the graph of a stationary surface
above the design plane be characterized by uniqueness).
However, a globally reversible design must be locally
reversible at every point on the surface.

Local multiplicity

The points of the surface at which the condition of local
reversibility is violated are called points of local multiplicity.
They are characterized by the following condition: the
orthogonal complement to the tangent plane at the point of
the surface x0 must have a non-empty intersection with the
tangent plane at some other point of the surface x1. In the
special case when the orthogonal complement has dimension
1 (i.e., when the normal to the surface is uniquely determined,
in other words, when the surface is a hypersurface, i.e.,
has codimension 1), this condition means the orthogonality
of the normals to the surface at these two points x0, x1.
In this case, both points are points of local multiplicity.
Such points always appear in pairs. The points for which
the pair is not found are points of local reversibility. The

https://doi.org/10.54646/bjcicn.2023.09
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FIGURE 8 | Parametric graph with multiplicity: (A) one of the design
directions (with changing parameter a−1) hiding multiplicity and (B)
design directions (with fixed parameter a−1) hiding multiplicity.

normal to such a point determines the direction of a locally
reversible projection.

For example, the surface k − x2
= 0 on the plane

(x, k) is an ordinary parabola. The normal to the surface
is uniquely determined; it is a vector (−2x, 1). The local
multiplicity condition (−2x0)∗(−2x1) + 1∗1 = 0 takes the
form 4x0x1 +1 = 0. As you can see, two points of the surface
(x0, k0), (x1, k1) enter this condition equally, symmetrically.
This condition is met for any values of x0, except zero. The
origin of coordinates x0 = 0, k0 = 0 is the only point
of local unambiguity. The gradient at this point, equal to
(0, 1), determines the only direction (upward) of the locally
reversible projection.

Similarly, for a surface k − xz = 0, x+z = 1
in space (x, z, k) (projected onto the plane (x, k), it is
the same parabola, but shifted: k = x(1 − x) the

orthogonal complement is 2D; it is the plane of gradients
(z,−x, 1), (1, 1, 0). The tangent plane is 1D and is given
by the vector (1,−1, z–x), orthogonal gradients. This vector
(1,−1, zz0 − x0) at one of the points (x0, z0, k0) should
be orthogonal to the gradients (rz1,−x1, 1), (1, 1, 0) at
the other point (x1, z1, k1). Orthogonality condition is x1 −

z1 = x0 − z0. Expressing z by x, we get x1 = x0. The
point x0 = 1/2, z0 = 1/2, k0 = 1/4 is the only point of
local unambiguity. Direction

(
1, s the

)
is the only direction of

locally reversible design.
As a rule, and in general, almost all points on the

surface are points of local multiplicity. The points of local
unambiguity and, accordingly, the directions of locally
reversible design constitute a set of codimensions 1 and
higher, or may even be isolated points, as in the two examples
discussed aearlier.

For the surface az−b (1− z)−z2 (1− z) = 0 considered
in space (a, b, z), corresponding to the model (10) (we
slightly changed the notation of variables by removing the
indexes), the gradient is (z, z − 1, a + b − 2z + 3z2).
The condition of orthogonality of gradients at
two different points (a1, b1, z1), (a2, b2, z2) has
the following form: z1z2 + (1− z1) (1− z2) +(
a1 + b1 − 2z1 + 3z1

2) (a2 + b2 − 2z2 + 3z2
2)

= 0.
Taking into account the relations a1+b1 =

b1
z1
+z1 (1− z1),

a2 + b2 =
b2
z2
+ z2 (1− z2), that are fulfilled on the

surface, the orthogonality condition can be reduced to the
form z1z2 + (1− z1) (1− z2) + ( b1

z1
− z1 (1− 2z1))(

b2
z2
−

z2 (1− 2z2) ) = 0. The first two terms are positive, so
one of the brackets, let the first one, should be positive, the
other negative. Therefore, b1 > z1

2 (1− 2z1), z2 < 1/2
I I/ b2 < z2

2 (1− 2z2). Let us further assume that these
inequalities are fulfilled. With fixed z2, b2 within these limits,
the right part of the expression

b2

z2
− z2 (1− 2z2) = −

z1z2 + (1− z1) (1− z2)
b1
z1
− z1 (1− 2z1)

accepts all negative values, with the appropriate selection of
z1, b1. Thus, the points of local multiplicity (a2, b2, z2) are
described by the relations

a2 + b2 =
b2
z2
+ z2 (1− z2) , 0 < z2 < 1/2,

0 < b2 < z2
2 (1− 2z2) .

All other points on the surface are points of local
reversibility. Gradients at these points are directions of locally
unambiguous design.

A design that hides multiplicity

We can determine the direction of design (the direction of
unambiguity), hiding multiplicity, based on the following
considerations. Let there be a function y = f (x),



10.54646/bjcicn.2023.09 61

differentiable in a connected convex domain D of the space
Rn. We are looking for the “right” direction of the design
defined by the vector d, such that each of the lines of the
family y = dx + c intersects the graph of the function f (x)

at no more than one point. We formulate a condition for the
“correct” vector d.

Criteria

The directions of unambiguity are in addition to the set
of directions of the gradients of the function under study,
calculated at all points of the domain D.

Proof

If any of these lines intersect the graph twice, say, at points
x = a and x = b, then according to Lagrange’s mean value
theorem, there is a point c on the segment [a, b] in which
the tangent is parallel to the chord connecting the points [a,
f (a)] and [b, f (b)]. In other words, the normal of the segment
coincides with the gradient of the function f (x) at some
point c of the segment. Thus, the vector d coinciding with
the gradient of the function f at some point in the domain
D cannot be the direction of unambiguity. The opposite
is also true: any direction that does not coincide with the
gradient of the function f at any point in the domain D is
the direction of unambiguity.

Examples of the application of the
criterion of directions of unambiguity

Example 1. The circle x2 + y2 = 1 preserves multiplicity in any
direction of design (Figure 4).

Example 2. The parabola y = x2 on the unit segment
0 ≤ x ≤ 1 allows hiding multiplicity. Its gradient 2x
takes values on the segment [0, 2]. Therefore, the design
direction y = dx hides multiplicity at d < 0 or d > 2
(Figures 5A, C).

Example 3. Bell. The function y = 1/(1 + 5x2), considered
on the entire numerical axis, also allows hiding multiplicity
with a suitable choice of the design direction. The gradient of
this function, −10x/(1 + 5x2)2, takes values on the segment
[mn = −(3

√
15)/8, mx = 3

√
15)/8]. Therefore, the correct

design direction d is determined by the conditions d < mn
or d > mx (Figures 6A, C).

Applying the criterion to the model (7)

We apply this method to determining the correct directions
for designing the function (10). This function depends on the
parameter a−1 and, at 0 < a−1 <1/27, is characterized by
multiplicity. The derivative of this function on the segment
x = [0, 1] takes values from mn = 33√a−1−1 to mx = +∞
(Figure 7). Therefore, all directions of hidden multiplicity are
determined by the inequality d < mn (Figures 8A, B).

Conclusion

Thus, hidden multiplicity (i.e., the existence of unambiguity
directions for models that admit multiplicity) occurs quite
often, especially if the model is considered not in the
entire parameter space but in a certain zone of physicality.
The paper presents a criterion that allows finding the
directions of unambiguity for a wide class of models.
The criterion is illustrated by the example of curves on
a plane and surfaces in space defined by a function
of the form y = f (x), but it can also be used in
the multidimensional case, which can be the subject of
further research.
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