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The utilization of Artificial Intelligence (AI) in leveraging Cognitive Radio Networks (CRNs) represents an
emerging field of study. This surge is primarily driven by operational expenses, concerns over traditional power
sources, and limitations inherent in current CRN technologies. Furthermore, integrating AI into CRN operations
significantly enhances efficiency and maximizes the application of the electromagnetic spectrum. To enable
real-time processing, Cognitive Radio (CR) is paired with AI methodologies, fostering adaptive and intelligent
resource allocation. This research paper outlines CRNs: their objectives, available resources, and constraints. It
subsequently introduces AI techniques, emphasizing the profound influence of learning within CR contexts. The
application of model methods such as Markov Model, fuzzy logic, and Neural Network is explored. AI technology
is employed in critical CR tasks like spectrum sharing, spectrum sensing, resource allocation, optimization of
spectrum mobility, decision-making processes, and more. The overarching goal is to showcase how AI can assist
researchers in harnessing and implementing diverse CR designs effectively.
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1. Introduction

Electromagnetic spectrum is an exceptional resource
that exists naturally and is allocated to several licensed
holders called Primary Users (PUs) depending on the
assigned spectrum policy. However, it was discovered
that a large percentage of the assigned spectrum was not
utilized. To mitigate this problem, CR was suggested to
opportunistically exploit the spectrum in the absence of
the PU. Cognitive radio refers to wireless communication
systems and devices that have the ability to autonomously
adapt radio characteristics and behavior in order to optimize
the utilization of spectrum resources. This technique seeks to
enhance the efficiency of the limited and irreplaceable radio
frequency spectrum (1).

In cognitive radio technology, the term “harvesting”
refers to the intelligent discovery and use of dormant or
underutilized parts of the spectrum. Cognitive radios
have the capability to detect unoccupied frequency
bands, enabling them to opportunistically use these
bands without causing interference to authorized
main users (2). Cognitive radio systems use spectrum
sensing, dynamic spectrum management, and adaptive
modulation methods to adjust their transmission parameters
according to changing spectrum circumstances. This
enables them to optimize spectrum consumption and
coexist well with current users (3). These proficiencies
are achieved by incorporating AI systems in the heart
of the CR. AI assists CR consumers to resolve glitches
by imitating human biological processes like reasoning,
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self-adaptation, learning, self-stability, self-organization, and
decision-making.

Due to the increasing need for wireless communication
and the limited availability of spectrum, cognitive radio
technology becomes very important. This adaptability
allows cognitive radios to improve the utilization of
spectrum and efficiently share the spectrum with existing
users (3). The concept of using cognitive network (CN)
capacity is a potential area of study and advancement
in wireless communications. Cognitive radio technology
aims to optimize spectrum use by intelligently adjusting
transmission and reception settings. The progression of this
idea entails using AI and machine learning methodologies,
particularly dynamic Spectrum Access (1).

Considerable progress in radio technology has led
to the extensive implementation of CR, a sophisticated
software-driven radio system, as documented in Bello-Salau
et al. (4). This CR system incorporates techniques from
information theory (IT), statistical signal processing (SSP),
game theory (GT), artificial intelligence (AI), and broad-
spectrum multiple-antenna methodologies. The exceptional
dynamism that this fusion imparts to the transceivers
empowers them to learn, adapt, and exhibit self-awareness.
CR is a prospective technology for the next era of wireless
systems due to these characteristics.

The paper provides an in-depth analysis of various
AI strategies that enhance the intelligence of cognitive
radio systems within cognitive radio networks (CRNs),
as explained in Morabit et al. (2). AI enables these
systems to address complex difficulties by imitating human
cognitive processes such as decision-making, self-adaptation,
reasoning, self-organization, learning, and self-stability. This
work investigates the use of artificial intelligence (AI)
methods in critical tasks of CR. These activities include
spectrum sensing (SS), spectrum sharing (SSh), mobility
management (MM), decision-making (DM) in dynamic-
spectrum-access (DAC), resource allocation (RA), parameter
adjustments, and optimization problems. The main objective
of this resource is to offer a comprehensive reference for
academics to better comprehend the many applications of
AI in various cognitive radio designs. It also aims to guide
interested readers toward contemporary AI-focused research
in CRNs (2).

According to Abbas et al. (1), CRs are poised to
perform a crucial role in meeting with the growing need
for wireless systems. These nodes use their perception
of the surroundings and analysis of environmental data
to make well-informed judgments about how to allocate
and manage time, frequency, and space resources. This
ultimately improves the efficiency of spectrum usage. Widely
used in real-time operations, the combination of artificial
intelligence and machine learning methods attains optimal
efficiency. This results in the ability to allocate resources in
an adaptable and intelligent manner. This research endeavor

begins by providing a comprehensive introduction to CRNs,
including their resources, aims, restrictions, and obstacles.
Subsequently, it presents AI and machine learning (ML)
methodologies, highlighting the significance of learning in
CR. This text presents a thorough examination of the
most advanced ML techniques used in CRs. The existing
literature is put into different groups based on different AI
methods, like fuzzy logic (FL), neural networks (NN), and
Markov models (MM). In addition, the study explores the
implementation of CR and the upcoming issues associated
with learning in CR applications.

As highlighted in Benidris et al. (3), CR is a crucial
enabler of NGWS (Next Generation Wireless Systems). It
empowers users to efficiently and fairly access and distribute
the spectrum among themselves. This study presents several
artificial intelligence methodologies, including artificial
neural networks (ANN), meta-heuristic algorithms (MHA),
and hidden Markov models (HMM), that have been
suggested to enhance cognitive engines with cognitive skills,
thereby further enhancing CR technology.

2. Varieties of harvester

In different scenarios, the term “harvester” usually describes
a device or system created with the purpose of collecting
or accumulating specific elements. The particular kind of
harvester may differ depending on its intended use. Here are
several prevalent varieties of harvesters.

2.1. Energy harvester

Within the energy domain, a harvester is a mechanism
devised to accumulate and store energy from the
surroundings. This energy may stem from diverse sources
like solar panels (solar energy harvester), piezoelectric
materials (vibration energy harvester), or thermoelectric
materials (heat energy harvester). These devices often serve
to power low-energy electronics or sensors.

2.2. Radio frequency (RF) harvester

An RF harvester is a contrivance engineered to capture
and transform ambient RF energy, such as Wi-Fi or
cellular signals, into electrical power. This technology finds
application in powering compact electronic devices or
sensors sans reliance on conventional batteries.

2.3. Data harvester

In the realm of data mining or web scraping, a data harvester
represents a software tool or script designed to automatically
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gather data from websites or other online sources. Its purpose
is to accumulate information for various objectives, including
market research or competitive analysis.

2.4. Harvester network architecture

The suggested CR Harvesting Network Architecture
(CRHNA) is shown in Figure 1. CR routers are denoted
with relay stations.

Important to note is a secondary service provider (SSP)
or PU-assigned licensed spectrum bands to provide reliable
communication services. The SSP could be independent
wireless service provider or present wireless network
operator which plans to improve its services. The CR-routers
and BSs work collectively to handle the resources (licensed
or unlicensed) in other to control the traffic in the coverage
area. The CR-routers are CR meshes that transport data
from the BSs to the end users or secondary users (SUs) so
that spectrum can be more effectively used with potentially
advanced frequency reuse (3).

3. Cognitive radio network

Cognitive Radio Networks (CRNs) are wireless
communication networks that use cognitive radio
technologies to maximize the efficiency of radio spectrum
usage. The networks are engineered to adapt to changing
spectrum conditions, maximizing spectrum efficiency,
and offering heightened flexibility across various wireless
communication applications. We hereby provide an
overview of cognitive radio networks (1).

3.1. Cognitive radio technology

Cognitive radios, as devices or network nodes, possess
the ability to perceive, learn from, and adjust to their
radio surroundings. Their functionality includes detecting
unused or underutilized spectrum regions known as “white
spaces” and dynamically modifying transmission parameters
to access available frequencies (1).

3.2. Dynamic spectrum access (DSA)

Dynamic spectrum access (DSA) is a crucial characteristic
of cognitive radio networks. Cognitive radios have the
ability to detect and analyze the electromagnetic spectrum,
allowing them to intelligently and strategically make use
of the frequencies that are currently accessible. This results
in substantial enhancement in the efficiency of spectrum
utilization while simultaneously reducing the occurrence
of interference.

3.3. Spectrum sensing

Cognitive radios find unoccupied frequency bands and
identify principal users (licensed spectrum holders) using
spectrum sensing methods. Typical sensing techniques
include matched filtering, cyclo-stationary feature
identification, and energy detection (4). Spectrum sensing
is a necessary component of CRNs, as it ensures the rights
of primary users are respected while facilitating efficient
spectrum utilization and access to available frequency
bands. Accurate spectrum sensing proves indispensable for
the success of CR technology in wireless communication
applications (4).

3.4. Cognitive cycle (CC)

The wireless communication system (WCS), as illustrated
in Figure 2, consists of wireless radio networks and base
stations (BS). Within this system, certain locations serve
as primary users (PUs), while others operate as secondary
users (SUs). PUs own the network, whereas SUs utilize the
spectrum opportunistically when it is vacant. In Figure 2
the SSP coordinates spectrum harvesting and optimization.
PU is the device or system that has the licenses for a
particular spectrum bands.

Base station (BS) is a system node providing essential
support for coverage services, allowing the SSP to achieve
supportive network services. It functions as an agent of
control message exchange for the SSP. CR-router is a
fixed relay/wireless router station furnished with several
CR interfaces and can be tuned to countless accessible
frequency bands for communications. CR mesh is a wireless
mesh backhaul which could use basic bands and harvested
bands to support BSs in delivering services through multi-
hop transmissions. Basic band is the Spectrum bands
that are licensed to the SSP (5). Figure 3 shows CRN
using the CC to enhance resource management and
network functioning. In order to maximize the deployment
of the electromagnetic ratio spectrum, CRNs function
by detecting their surroundings, evaluating their exterior
characteristics, and making decisions about the distribution
and management of dynamic resources (5).

The processes involved in the cognitive radio cycle are
discussed below:

3.5. Sensing the environment

Within a CRN, the primary network (PN) retains the primacy
for spectrum usage over the secondary network (SN). While
the SN can utilize available spectrum, it must avoid causing
disruptive interference to the PN. The SN is tasked with
sensing various environmental parameters such as Khan and
Nakagawa (6):

a) Available spectrum and its power
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FIGURE 1 | Cognitive radio (CR) harvester network architecture (3).

b) Channel characteristics among base stations (BS) and
users

c) Identification of vacant spectrum holes across time,
frequency, and space

d) Power consumption,
e) Application and user demands
f) Local policies and constraints.

CR resource distribution/allocation objectives encompass
the following (7):

a) Minimizing Bit Error Rate (BER),
b) Reducing power consumption,
c) Enhancing throughput,
d) Minimizing interference,

FIGURE 2 | The CR and typical operations (5).

e) Optimizing spectrum efficiency
f) Enhancing Quality of Service (QoS).

3.6. Decision making

Decisions in a CRN are based on multiple variables aligned
with the aforementioned objectives, where the CRN makes
decisions on critical aspects including (8):

a) Distribution of frequency bands,
b) Power control,
c) Coding and adaptive modulation,

FIGURE 3 | Learning process in CRs (1).
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d) Allocation of time slots,
e) Frame size and symbol rate,
f) Antenna selection and parameters,
g) Rate control,
h) Handover, scheduling, and admission control,
i) Load control, routing plans, base station utilization,

and congestion control.

4. Cognitive radio tasks and
challenges

Cognitive Radios (CRs) are primarily responsible for
detecting spectrum gaps in several dimensions, including
frequency, space, and time. Based on these gaps, CRs modify
transmission parameters, including modulation, coding,
frequency, time, antenna characteristics, slot allocation, and
power management. In their role as a secondary user (SU),
CRs effectively use their capacity for learning, capacity
for reconfiguration, and capacity for cognitive processing,
to methodically prevent them from causing noticeable
disruption to the primary user (PU).

4.1. Cognitive capability

To reach CR’s cognitive capacity, you need to be able
to effectively sense and understand spectrum and the
environment, which includes understanding operational
concepts, network topology, spatial and position awareness,
and RF environment (9). Some problems that these skills
have, though, are finding spread spectrum primary signals,
figuring out the background noise power, which can be
hard when the SNR is low because of multipath fading
and shadowing, and being accurate when figuring out
spectrum availability, frequency, and periodicity. Suggestions
for improving the spectrum sensing include the use of geo-
location technology and cooperative sensing.

4.2. Reconfiguration capability

In order to improve network performance by minimizing
energy consumption, reducing interference, maximizing
spectrum utilization, and throughput while meeting users’
QoS demands such as delay, rate, and BER, reconfiguration
capability systematically modifies operational processes
and transmission parameters, including policies (10).
Adaptive modulation, symbol rate, power control, frame
size, frequency band assignment, rate control, and time slot
allocation are all examples of reconfigurable parameters
(1). The intricacy and rapid convergence of this technology
provide a hurdle. CRNs use AI and machine learning
based on cognitive learning models that are generated

from surrounding information to solve this problem. CRNs
should make decisions quickly and methodically (11).
These issues need further research since they impair CRNs’
capacity to reconfigure.

4.3. Learning capability (LC)

Learning capability (LC) is utilized in building and
developing learning models for decision-making.
Enabling systems to learn from prior choices and use
this understanding to enhance performance is a major
problem (1). However, it is considered challenging to select
an accurate and efficient learning strategy for exact CR tasks
(1). AI techniques are presented as potential schemes for
CRs, gaining recent interest in CR learning (3).

5. Leveraging AI in CRN

In the field of computer science and engineering, AI is a
broad, multidisciplinary area that focuses on creating tools
and systems that can do activities that are normally associated
with human intellect. Its range of methods includes many
strategies, tactics, and uses, and it has advanced significantly
in the last several years. Here’s an overview of key facets of AI
(3): AI aims to enable machines to assume tasks akin to an
expert, perceiving their surroundings and executing actions
to optimize utility. Challenges within AI include reasoning,
knowledge representation, deduction, problem-solving, and
learning (11). Crucial procedures in machine learning within
CRs are depicted in Figure 3, emphasizing the following (12):

a) RF sensing, like channel quality assessment
b) Environment detection and analyzing feedback
c) Learning
d) Maintaining decisions and what was observed for

refining future decision-making precision
e) Resource management and corresponding

transmission error control.

AI techniques applicable to CRNs include genetic
algorithms, fuzzy logic, neural networks, reinforcement
learning, game theory, Bayesian methods, entropy, support
vector machines, base colony algorithm meta-heuristic,
Markov models, and multi-agent systems (12).

6. Notable applications of AI in CRN
harvesting

Key learning concepts within cognitive radios are articulated
using the following AI methods and techniques:
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6.1. Fuzzy logic

Zadeh (13) first proposed this theory in 1965 as a means
of representing imprecise, hazy, ambiguous, and uncertain
information using empirical and mathematical models, as
outlined in Abbas et al. (1). Contrary to crisp and classical
sets that are limited to either true or false values (14),
fuzzy logic is used in cognitive radio (CR) for many
purposes, such as power management, interference control,
bandwidth allocation, resource distribution, and evaluation
of the available spectrum. This utilization is detailed in Kaur
et al. (15), where a centralized fuzzy interference system
that allocates bandwidth to cognitive users is presented,
taking into account QoS priority, traffic intensity, and
kinds. Secondary users (SUs) use fuzzy logic to request
bandwidth from a master SU. This fuzzy logic system
assesses the intensity of traffic and determines the allocation
of bandwidth based on priority. The application of fuzzy
logic in Matinmikko et al. (16) involves evaluating various
available bandwidth sensing techniques. This evaluation is
based on input parameters such as the required probability
of sensing, the functional SNR, the time available for sensing,
and prior knowledge. The results of this evaluation include
energy sensing, correlation sensing, feature sensing, matched
filtering, and cooperative energy sensing, all of which are
determined using fuzzy input values.

6.2. Artificial Neural Networks (ANN)

In 1943, NNs were introduced by Walter Pitts and Warren
McCulloch, drawing motivation from the human central
nervous system. Analogous to biological counterparts,
ANNs consist of interconnected nodes or neurons that
constitute the network. Anomalies neural networks (ANNs)
receive data from adjacent neurons and produce output in
accordance with the mass and initiation functions of said
neurons. Adaptive mass pertains to the degree of inter-
neuronal connectivity, which is regulated in such a way that
the output of the network closely resembles the anticipated
output. ANNs can be utilized in CR to make decisions that
improve the Quality of Service (QoS) in communication
systems by learning from the environment (1).

The issue of spectrum scarcity in the current
communication system was resolved by authors in Tan
et al. (17) through the utilization of ANNs as a substitute
for the current frequency distribution system. An endeavor
was undertaken in Zhang et al. (18) to improve spectrum
sensing in CRNs through the implementation of ANNs
across Secondary Users (SUs) in order to forecast sensing
probabilities. The objective was to develop innovative
cooperative spectrum sensing methods by combining the
capabilities of multiple SUs with expertise in artificial neural
networks (ANNs) and a fusion center that utilizes the theory
of propagation networks. Furthermore, authors of Popoola

and Van Olst (19) introduced a range of spectrum sensing
methodologies and put forth a suggestion for an automated
sensing method that classifies modulation. The objective of
this approach was to empower SUs to perceive a wide range
of primary radio (PR) signals, irrespective of their strength,
knowledge, familiarity, or lack thereof, without any prior
knowledge of the PU’s signals.

Anomalies neural networks (ANNs) possess the
capability to perpetually learn and dynamically adapt,
which enables them to comprehend the patterns and
characteristics of the systems under analysis. During the
learning process, neurons are stored in memory (computer
memory), allowing for sequential control of outputs in
response to new circumstances while preserving previous
outputs. Analytically formulating functions or processes
becomes a challenge due to their complex and non-linear
characteristics. Furthermore, ANNs can facilitate adaptive
problem-solving processes and recognize or classify received
stimuli in CR (3).

6.3. Markov model

For modeling random processes that transition from one
state to another over time and lack memory so that future
conditions are determined solely by present conditions,
this model is implemented. Unlike the Markov Model,
the observer cannot directly observe the conditions of the
Hidden Markov Model (HMM). HMM was utilized to
improve spectrum sensing in CR in Ghosh et al. (20),
where authors proposed the application of HMM in CR
for processing signal cyclostationary characteristics and
resolving spectrum sensing challenges, respectively. The
HMM-based method has found extensive implementation in
CR. The writers also looked into whether it would be possible
to use the Hidden Bivariate Markov (BHMM) and Non-
Stationary Hidden Markov (NSHMM) models to predict RF
channel occupancy in CR systems (21). They did this through
simulations and real-time implementations. The findings
demonstrated the capacity to efficiently employ a substantial
fraction of the accessible spectrum for secondary purposes.

7. Future directions and challenges

Artificial intelligence (AI) in CRN faces several known
issues and impending challenges, including the exploration
of beam forming’s potential and its impact on human health.
Some critical areas warranting future attention encompass:
Optimizing secondary user throughput involves algorithms
that currently pose high computational complexity. This
complexity elongates transmission periods, diminishing
sensing durations. Previous CRN studies have used strategies
such as energy detectors or random PU channel access
in relation to spectrum sensing (SS). On the other hand,
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energy detectors create significant uncertainty, and random
PU channel access at low signal-to-noise ratios (SNR)
impairs PU privacy. Therefore, it is essential to use
stronger SS approaches. While improving SS accuracy is
important, it also increases computing complexity, increases
power consumption and sensing times, and lowers SU
throughput. Embracing new cutting-edge methodologies
such as Wireless Distributed Computing (WDC) introduces
innovative paradigms for devices with constrained power
sources. WDC potentially curtails power consumption when
AI operates within CRN setups, potentially boosting SU
throughput.

8. Conclusion

In addition to highlighting current developments in CRNs
and AI, this study described AI methodologies incorporated
into CR designs and stressed the critical role that learning
plays in CR settings. The research examined CR tasks,
evaluations, and the difficulties associated with learning
approaches in CRNs, as well as cutting-edge advancements
using AI learning methods in CR. The importance of AI
techniques varies according to their use and execution. The
best choice of AI methods for CR design depends on a
number of variables, including application requirements,
accuracy, computational complexity, resilience, and previous
knowledge. Additionally, the selection of AI approaches in
CR settings is influenced by hardware characteristics like
speed, memory, and processor potential.
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