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For a three-station path difference positioning system with an arbitrary planar layout, if the solution analysis is
directly based on the path difference equation, the radial distance unknowns in the equation are difficult to directly
eliminate. Once the conversion relationship between the polar coordinate system and the Cartesian coordinate
system is utilized, the differential equation system can be transformed into a mixed variable equation system,
which includes both the three radial distances in the polar coordinate system and the two coordinate variables in
the Cartesian coordinate system. Take the radial distance of the main station as the quantity to be solved, and
use the path difference equation to express the radial distance of the secondary station as a function of the radial
distance of the main station. By selecting the appropriate station coordinates, an unknown variable in the Cartesian
coordinate system can be eliminated. By combining mixed equations, another unknown variable in the Cartesian
coordinate system can be further eliminated. Thus, a definite solution equation containing only the radial distance
of the main station is obtained.

Keywords: three-station positioning, linear arrays, path difference equation, analytical equation, planar geometry,
passive location

1. Introduction

The traditional multi-station passive positioning system
requires solving highly nonlinear hyperbolic measurement
equations. The drawback of this method is that there is
no analytical solution. The positioning accuracy strongly
depends on whether the initial position estimation is
accurate. There will be positioning blur (1–7).

The research results of the author many years ago indicate
that for the passive positioning problem of planar three
stations, a linear analytical solution can be obtained using
planar geometric relationships based on path difference
measurement (8).

This article proves that by using the transformation
relationship between Cartesian and polar coordinate systems,
a mixed variable definite solution equation can be directly

established based on the path difference equation, and linear
analytical solutions can be obtained without the need for
planar geometric relationships.

2. Existing proof

In order to facilitate the conversion of ranging solutions
at different stations and enable comparison of the final
derivation results, this paper has made significant changes to
the identification of stations based on reference (8).

2.1. Geometric model

For a planar three-station positioning system with an
arbitrary station layout, its geometric model is shown in
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FIGURE 1 | Schematic diagram of a planar arbitrary three-station positioning array with known baseline angles.

Figure 1. Let the middle station S2 be the main station,
and the other two stations S1 and S3 be secondary stations.
Roughly ignoring the height of distant targets, assuming
that the target T

(
x, y

)
is also located in a two-dimensional

plane. Assumption: The angle β between the radial distance
r3 and the baseline d1 is an unknown target azimuth angle.
The baseline length d1 and the angle β0 between the inter-
station baselines are set to values that can be measured during
station deployment.

2.2 Basic solution

According to the geometric relationship shown in Figure 1,
using the main station S2 as the reference for path difference
measurement, there is the following path difference equation:

1r2 = r2 − r3 (1)

1r3 = r3 − r1 (2)

where: 1r2 is the path difference between the substation
and the main station; 1r3 the path difference between two
substations.

Based on the preset angle, the cosine theorem can provide
the following two trigonometric positioning equations:

r2
2 = r2

3 + d2
1 − 2d1r3 cosβ (3)

r2
1 = r2

3 + d2
3 − 2d3r3 cos(β − β0)

= r2
3 + d2

3 − 2d3r3 (cosβ cosβ0 + sinβ sinβ0)
(4)

The target orientation can be solved from equation (3):

cosβ =
r2

3 + d2
1 − r2

2
2d1r3

(5)

Substituting equation (5) into equation (4) yields:

r2
1 − r2

3 = d2
3 − 2d3r3

[ (
r2

3+d2
1−r2

2
2d1r3

)
cosβ0 +√

1−
(

r2
3+d2

1−r2
2

2d1r3

)2
sinβ0

]
(6)

From the relationship equation of path difference:
1r2 = r2 − r3, we obtain:

r2
3 − r2

2 = −21r2r3 −1r2
2 (7)

From the relationship equation of path difference:
r1 = r3 −1r3, we obtain:

r2
1 = r2

3 − 21r3r3 +1r2
3 (8)

Replace the above two equations with equation (6):

− 21r3r3 +1r2
3

= d2
3 − 2d3r3

[(
d2

1 − 21r2r3 −1r2
2

2d1r3

)
cosβ0+√

1−
(

d2
1 − 21r2r3 −1r2

2
2d1r3

)2

sinβ0

] (9)

Thus, an analytical equation containing only one unknown
variable r3 is obtained.

2.3 Transformation processing

After transforming equation (9), there are:

2d3r3 sinβ0

√
1−

(
d2

1−21r2r3−1r2
2

2d1r3

)2

= d2
3 −1r2

3 −
d3
d1

(
d2

1 −1r2
2
)

cosβ0+

2
(

d3
d1
1r2 cosβ0+1r3

)
r3

= a+ br3

(10)

In the formula:

a = d2
3 −1r2

3 −
(
d2

1 −1r2
2
) d3

d1
cosβ0

b = 2
(

d3

d1
1r2 cosβ0+1r3

)
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After squaring both sides of equation (10), we obtain:

4d2
3r2

3 sin2 β0 −
d2

3
d2

1
sin2 β0

(
d2

1 − 21r2r3 −1r2
2
)2

= a2
+ 2abr3 + b2r2

3
(11)

If c = d2
1 −1r2

2 , there are:

4d2
3r2

3 sin2 β0 −
d2

3
d2

1
sin2 β0

(
c2
− 4c1r2r3 + 41r2

2r2
3
)

= a2
+ 2abr3 + b2r2

3
(12)

After expansion, there are:

4d2
3r2

3 sin2 β0 − c2 d2
3

d2
1

sin2 β0 + 4c d2
3

d2
1

sin2 β01r2r3

−41r2
2

d2
3

d2
1

sin2 β0r2
3

= a2
+ 2abr3 + b2r2

3

(13)

Finally, a quadratic equation of one variable is obtained:

a2
+ c2 d2

3
d2

1
sin2 β0 + (2ab− 4c1r2

d2
3

d2
1

sin2 β0)r3

+(b2
+ 41r2

2
d2

3
d2

1
sin2 β0 − 4d2

3 sin2 β0)r2
3 = 0

(14)

2.4 Degradation verification

Equation (14) can be labeled as:

Ar2
1 + Br1 + C = 0 (15)

In the formula:

A = b2
+ 41r2

2
d2

3
d2

1
sin2 β0 − 4d2

3 sin2 β0

= 4
(

d3
d1
1r2 cosβ0+1r3

)2
+ 41r2

2
d2

3
d2

1
sin2 β0 − 4d2

3 sin2 β0

B = 2ab− 4c1r1
d2

3
d2

1
sin2 β0

= 4
(

d2
3 −1r2

3 −
(
d2

1 −1r2
2
) d3

d1
cosβ0

)
(

d3
d1
1r2 cosβ0+1r3

)
− 4

(
d2

1 −1r2
2
)
1r1

d2
3

d2
1

sin2 β0

C = a2
+ c2 d2

3
d2

1
sin2 β0 =

(
d2

3 −1r2
3 −

(
d2

1 −1r2
2
) d3

d1
cosβ0

)2

+
(
d2

1 −1r2
2
)2 d2

3
d2

1
sin2 β0

Once the angle β0 approaches zero, that is, when the three
stations are arranged in a straight line, equation (14) will
degenerate into:

a2
+ 2abr3 + b2r2

3 = 0 (16)

That is: a+ br3 = 0, for a symmetric equal-length array, i.e.
when d3 = 2d1 = 2d, we can obtain:

r3 = −
a
b
= −

4d2
−1r2

3 − 2
(
d2
−1r2

2
)

2 (21r2+1r3)
(17)

2.5 Ranging solution for the midpoint of
the array

In order to facilitate comparison with the derivation results
in the next chapter, this section converts the ranging
solution at the third station to the ranging solution at the
midpoint of the array.

Order:

1r1 = r1 − r2 (18)

Because: 1r3 = r3 − r1, there is: 1r3 = r3 − r2 + r2 −

r1 = −1r2 − 1r1. Because of: 1r2 = r2 − r3, there is:
r3 = r2 −1r2. Substitute these equations into equation (17):

r2 −1r2 = −
4d2
− (1r2 +1r1)

2
− 2

(
d2
−1r2

2
)

2 (21r2 −1r2 −1r1)
(19)

We can obtain:

r2 =
2d2
−1r2

1 −1r2
2

2 (1r1 −1r2)
(20)

This result is completely consistent with the analytical result
obtained when arranged in a straight line with three stations
(8). This verification result indicates that for a three-station
positioning system with an arbitrary layout in a plane,
analytical results can be obtained without complex nonlinear
operations using additional geometric conditions.

3. Mixed analysis method of double
coordinate systems

3.1 Geometric structure and distance
equation

First, assume there are any three stations on the two-
dimensional plane, and the geometric figure is shown in
Figure 2. Preset the station S2 as the main station, and the
other two stations S1 and S3 as the secondary stations.

In the polar coordinate system, two path difference
equations (18) and (1) can be obtained from the three
stations. In the Cartesian coordinate system, the radial
distance can be expressed as:

r1=

√
(x− a1)2+(y− b1)2 (21)

r2=

√
(x− a2)2+(y− b2)2 (22)

r3=

√
(x− a3)2+(y− b3)2 (23)

In the formula, ai and bi are the coordinates of each
station, respectively.
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FIGURE 2 | Geometric schematic diagram of a planar arbitrary three-station positioning array based on mixed equations.

3.2 Underdetermined solution

First, square the path difference equations after moving the
terms, expand them, and then move the terms again to have:

1r2
12+21r12r2 = r2

1 − r2
2 (24)

1r2
23 + 21r23r3 = r2

2 − r2
3 (25)

Expand the radial distances on the right side of each equation
with the expression in the Cartesian coordinate system:

1r2
12+2r21r12 = (x− a1)

2
+
(
y− b1

)2
− (x− a2)

2

−
(
y− b2

)2

= 2x (a2 − a1)+ 2y
(
b2 − b1

)
+ a2

1 − a2
2 + b2

1 − b2
2

(26)

1r2
23+2r31r23 = (x− a2)

2
+
(
y− b2

)2
− (x− a3)

2

−
(
y− b3

)2

= 2x (a3 − a2)+ 2y
(
b3 − b2

)
+ a2

2 − a2
3 + b2

2 − b2
3

(27)

Further use the path difference equation to transform the
radial distance r3 on the left side of equation (27) into
a parametric function related to the main station’s radial
distance:

1r2
23+2 (r2 −1r23)1r23 = 21r23r2 −1r2

23
= 2x (a3 − a2)+ 2y

(
b3 − b2

)
+ a2

2 − a2
3 + b2

2 − b2
3

(28)

In the case of any three sites, only two mixed definite
solution equations can be obtained, while there are three
unknowns to be solved.

3.3 Definite solution equation

If the coordinate parameters in the y-axis are all the same, the
variable y will be eliminated. At this time, the array is a linear
array along the x-axis. For simplicity, directly make bi equal
to zero, then there is:

21r12r2+1r2
12 = 2x (a2 − a1)+ a2

1 − a2
2 (29)

21r23r2 −1r2
23 = 2x (a3 − a2)+ a2

2 − a2
3 (30)

For clarity, first transform the above equations. Set equation
(29) as the first definite solution equation:

A1x = F1 (31)

In the formulas:

A1 = 2 (a2 − a1)

F1 = 21r12r2+1r2
12 −

(
a2

1 − a2
2
)

Set equation (30) as the second definite solution equation:

A2x=F2 (32)

In the formulas:

A2 = 2 (a3 − a2)

F2 = 21r23r2 −1r2
23 −

(
a2

2 − a2
3
)

Multiply A2 on both sides of the first equation first:
A1A2x = A2F1. Multiplying A1 on both sides of the second
equation: A1A2x=A1F2. After subtraction, there is:

A2F1 − A1F2 = 0 (33)

After expansion and organization, it can be seen that
the existing mixed definite solution equations have been
transformed into a definite solution equation that only
contains the main station’s radial distance:

2 (A21r12 − A11r23) r2 =

A2
(
a2

1 − a2
2
)
− A1

(
a2

2 − a2
3
)
− A21r2

12 − A11r2
23 (34)

From which the radial distance r2 can be obtained:

r2 =
A2
(
a2

1 − a2
2
)
− A1

(
a2

2 − a2
3
)
− A21r2

12 − A11r2
23

(2A21r12 − 2A11r23)
(35)
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3.4 Qualitative analysis

If the main station is set at the origin of the Cartesian
coordinate system and an equidistant linear array is
considered, assuming the length of the array baseline is d,
that is:

a2=0, a1 = −d, a3 = d.

Once these results are put into formula (35), there is:

r2 =
2d2
−1r2

12 −1r2
23

2 (1r12 −1r23)
(36)

This is the existing linear solution of the one-dimensional
equidistant double-base linear array.

4. Conclusion

For the problem of plane three-station positioning, analytical
solutions can be obtained by utilizing existing plane
geometric relationships or by utilizing the transformation
relationship between two coordinate systems. For multi-
station positioning systems, the positioning error of the
target is closely related to its relative position to each
measurement station (9, 10). Optimizing the layout of
measurement stations under certain error factors is an
effective means to improve positioning accuracy. The
analysis in this article will contribute to further in-depth
research and optimization of the station configuration
problem in multi-station positioning systems.

From a step-by-step perspective, the deduction many years
ago was actually based on geometric equations as the main
approach. The path differential equation is auxiliary. It only
used the path difference equation to eliminate the unknowns
in the geometric equations. Therefore, the original proof
should more rigorously be called a solution method based on
geometric equations.

This paper proves the path difference equation as the main,
where the unknown radial distance is difficult to eliminate
directly. However, once the transformation relationship
between the polar coordinate system and the Cartesian
coordinate system is used, the path difference equation can
be transformed into a mixed variable equation that is more
suitable for offsetting unknown variables. As a result, the
linear solution of the non-equidistant double-base array can
be directly obtained without using planar geometry.

Similar to the solution method of the path difference
equation based on the transformation of two-coordinate
systems, the solution method using geometric equations
can also provide linear solutions for the positioning of
any three stations on a plane, but the mathematical
derivation process is slightly more complicated. As far
as the final expression form— the linear solution of a
linear array—is concerned, there seems to be no difference
between the two deduction methods. However, the solution
results of geometric equations directly include directional
parameters, while the solution method of the path difference
equation based on two-coordinate system transformation
is only related to coordinate values. Therefore, the author
personally believes that once the number of detection
stations on the plane is increased, from the perspectives
of simplifying the complexity of the problem, facilitating
calculation, and supporting software tools, the solution
method based on the path difference equation of the two-
coordinate system transformation, which is only related
to the coordinate values of the Cartesian coordinate
system, will be more conducive to using the matrix
method for processing.
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