Agricultural bioinformatics and machine learning techniques in Areca nut disease and crop improvement – a review
Main Article Content
Abstract
Bioinformatics is an interdisciplinary scientific field comprising biology, mathematics, and computer science. It is the application of information technology to the management of biological data that aids in deciphering plant genomes. Biological research, which previously began in laboratories, fields, and botanical clinics, now begins at the computational level, using computers (in silico) for data analysis, experimental design, and hypothesis development. Agriculture is the backbone of the nation, so agricultural bioinformatics is one of the fastest-growing scientific fields that use computational approaches to study biology and life sciences. India ranks first in the world for areca nut production and many farmers depend on areca nut cultivation for their livelihood. Areca nut yields are affected by many diseases caused by heavy rainfall and high relative humidity. Early prediction of crop diseases based on weather data helps farmers take preventive measures. Many machine learning methods are used to detect a disease from image data. Expanding knowledge about the molecules and mechanisms associated with specific phenotypic traits and specific responses to biotic or abiotic stresses will be complemented by the predictive power of bioinformatics to influence agricultural practices and improve diagnostic, monitoring, and advocating innovative methods in traceability, enhancing human value and supporting sustainability at low cost. This review briefs about the field of agricultural bioinformatics and the application of machine-learning techniques in the overall crop improvement of areca nut including disease prediction.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
This has been implemented from Jan 2024 onwards